Toggle light / dark theme

The next step for our Forever Healthy Berlin meetup…


We are a community collaborating on how to implement our early stage rejuvenation treatments.

The world has started the transition from an era where we were utterly helpless about our aging process to one where aging is under full medical control, and age-related diseases are a thing of the dark past.

We are not there yet, but the theoretical groundwork has been laid out, and scientists have successfully started working on the fundamentals. The first human rejuvenation therapies are under development and with Senolytics, NAD+ Restoration, Lipid Replacement, Decalcification, mTOR Modulation, Geroprotectors, and others some of those therapies are already available to the early adopters today.

Thanks to Authority Magazine and Fotis Georgiadis for the interview — Bioquark inc. (http://www.bioquark.com) — Regeneration, Disease Reversion, Age Rejuvenation — https://medium.com/authority-magazine/the-future-is-now-we-a…cc6dc8ebf1

BEIJING, Dec. 28 (Xinhua) — A Chinese research group has identified a gene variant that plays a key role in the development of Alzheimer’s disease in Han Chinese, the largest ethnic group in China.

The study was recently published by the National Science Review, an English journal affiliated with the Chinese Academy of Sciences (CAS).

Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory, thinking skills and the ability to carry out simple tasks. The disease affects about 48 million people worldwide, and the number is expected to increase with the aging population. There is no effective cure.

Read more

Replication is nature’s greatest magic trick. Watch closely, and before your very eyes you’ll see a single cell blur into two virtually identical copies. Presto.

After more than half a century of research on molecular genetics, it would be easy to assume we’ve had this biological sleight-of-hand all figured out — but it’s not the case.

Now, by applying cutting edge technology, researchers have uncovered crucial details showing how DNA times its own replication.

Read more

Professor Paul Dyson of Swansea University Medical School said:

“This new strain of bacteria is effective against 4 of the top 6 pathogens that are resistant to antibiotics, including MRSA. Our discovery is an important step forward in the fight against antibiotic resistance.

Our results show that folklore and traditional medicines are worth investigating in the search for new antibiotics. Scientists, historians and archaeologists can all have something to contribute to this task. It seems that part of the answer to this very modern problem might lie in the wisdom of the past.”

Read more

Physics grappled with the question of whether space is absolute or relative for centuries, before deciding in favor of relativity. But, it is only in recent years that the brain sciences have begun to discuss a parallel set of questions. For many years now, absolute space has ruled neuroscience. In the visual system, for example, it has long been assumed that there are two channels of information flow.4 The first is the “what” channel, carrying information about the identity of objects that an animal sees. The second is the “where” channel, containing information about the absolute position of these objects. It was believed that the “what” channel contained no positional information at all. However, recent work has shown that while no information about the absolute position of an object is present in this channel, there is relative position information.5,6 This relative positional information is likely to be very important for object recognition.


The first pieces of the brain’s “inner GPS” started coming to light in 1970. In the laboratories of University College London, John O’Keefe and his student Jonathan Dostrovsky recorded the electrical activity of neurons in the hippocampus of freely moving rats. They found a group of neurons that increased their activity only when a rat found itself in a particular location. They called them “place cells.”

Building on these early findings, O’Keefe and his colleague Lynn Nadel proposed that the hippocampus contains an invariant representation of space that does not depend on mood or desire. They called this representation the “cognitive map.” In their view, all of the brain’s place cells together represent the entirety of an animal’s environment, and whichever place cell is active indicates its current location. In other words, the hippocampus is like a GPS. It tells you where you are on a map and that map remains the same whether you are hungry and looking for food or sleepy and looking for a bed. O’Keefe and Nadel suggested that the absolute position represented in the hippocampal place cells provides a mental framework that can be used by an animal to find its way in any situation—be that to find food or a bed.

Over the next 40 years, other researchers—including the husband and wife duo of Edvard and May-Britt Moser—produced support for the idea that the brain’s hippocampal circuitry acts like an inner GPS. In recognition of their pioneering work, O’Keefe and the Mosers were awarded the 2014 Nobel Prize in physiology or medicine. You’d think that this would mean that the role of the hippocampus in guiding an animal through space was solved.