http://undoing-aging.org/videos/graham-pawelec-presenting-at…jA8AFapRLc
____________
For a personal sense of wellness, we may still be better off thinking of aging as an inevitable process with certain positive aspects—like additional wisdom accumulated through experience—rather than a sickness we hope to eradicate. If the many startups working on extended youth and anti-aging endeavors actually manage to create a magic potion that keeps us forever young, then someday we may get the chance to think about what, if anything, humanity loses when it finally finds the fountain of youth.
Aging has come to be seen as a disease we should be preventing.
Nanosized robots capable of crawling around on a person’s brain or underneath the skin may sound like a nightmare to some, but researchers suggest the mini machines could serve medical purposes such as gathering data on the brain or the spinal column.
Researchers at the University of Pennsylvania and Cornell University recently announced they have built nanosized, solar-powered robots made from silicon. One million such robots can fit on a 4-inch silicon wafer. “These robots are built massively in parallel, so I don’t build just one robot, I build a million robots, which is awesome,” declares Marc Miskin, an assistant professor of electrical and systems engineering at the University of Pennsylvania.
The microscopic machines can carry up to 30 times their own weight, travel at about the speed of biological cells, survive temperatures up to 400 degrees, live unscathed in battery acid or other harsh chemicals, and can be injected with a hypodermic needle.
Next-generation sequencing technologies are helping researchers to find mutations unique to an individual’s cancer as well as the genetic signatures that predict their immune response. Can they use these clues to develop long-lasting and effective anticancer vaccines?
Irina Kareva translates biology into mathematics and vice versa. She writes mathematical models that describe the dynamics of cancer, with the goal of developing new drugs that target tumors. “The power and beauty of mathematical modeling lies in the fact that it makes you formalize, in a very rigorous way, what we think we know,” Kareva says. “It can help guide us to where we should keep looking, and where there may be a dead end.” It all comes down to asking the right question and translating it to the right equation, and back.
Amanda Leverett Davis was diagnosed with an aggressive bone cancer called chondroblastic osteosarcoma in March of 2017. By the time her doctors discovered it, the disease had metastasized and advanced to stage 3. Amanda was told it was non-curative.
But nearly two years after her initial diagnosis, Amanda is still alive to share her story, and remarkably, she’s cancer free.
In biotech these days, CRISPR/Cas9 is a hot topic, because of its utility as a precise gene editing tool. Before humans repurposed it, CRISPR/Cas9 was a sort of internal immune system bacteria use to defend themselves against phages, or viruses that infect bacteria, by slicing up the phages’ DNA.
Scientists at Emory University School of Medicine and the Max Planck Unit for the Science of Pathogens have found that the “scissors” component of CRISPR/Cas9 sometimes gets stuck.
Cas9, an enzyme that cuts DNA, can also block gene activity without doing any cutting. In the pathogenic bacterium Francisella novicida, Cas9 regulates genes that need to be shut off for the bacteria to cause disease.
The successful treatment shows “precision medicine” can be expanded beyond cancers, where it has shown the greatest promise, scientists reported Monday.
Some mice receiving a therapy that includes CRISPR gene editing appear to have been cured of HIV, but safety concerns must be overcome before human trials.