Toggle light / dark theme

At the Ending Age-Related Diseases 2019 Conference in New York City, we had the opportunity to interview Dr. Justin Rebo from the drug discovery biotech company BioAge.

BioAge is developing a drug discovery platform that uses machine learning and artificial intelligence to discover targets that have the potential to promote healthy lifespan (healthspan) by slowing down aging and the ill health that it brings.

As the vice president of in-vivo biology at BioAge, Dr. Rebo leads the company’s internal in-vivo platform to find and assess the viability of new druggable targets for aging diseases and biomedical regeneration. With considerable business as well as academic experience in the aging field under his belt, Justin joined the BioAge team in 2018.

A new study is the first to report evidence that nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin may lessen the adverse effects of air pollution exposure on lung function. The team of researchers from the Columbia Mailman School of Public Health, Harvard Chan School of Public Health, Boston University School of Medicine published their findings in the American Journal of Respiratory and Critical Care Medicine.

The researchers analyzed a subset of data collected from a cohort of 2,280 male veterans from the greater Boston area who were given tests to determine their lung function. The average age of participants was 73 years. The researchers examined the relationship between test results, self-reported NSAID use, and ambient particulate matter (PM) and black carbon in the month preceding the test, while accounting for a variety of factors, including the health status of the subject and whether or not he was a smoker. They found that the use of any NSAID nearly halved of the effect of PM on lung function, with the association consistent across all four weekly air pollution measurements from same-day to 28 days prior to the lung function test.

Because most of the people in the study cohort who took NSAIDs used aspirin, the researchers say the modifying effect they observed was mainly from aspirin, but add that effects of non-aspirin NSAIDs are worthy of further exploration. While the mechanism is unknown, the researchers speculate that NSAIDs mitigate inflammation brought about by air pollution.

A year old, and this video is titled with the “I-word”. But a very interesting talk.


It’s not every day that I get to post a video where I feel like I’m involved with something that may seriously improve and extend lives. I’m so grateful that somehow, I was brought into this process.

The ForbiddenKnowledgeTV newsletter and website attract a large number of physicians and health-practitioner subscribers and it’s been a real joy to make friends with the doctors on my list over the years. One leading physician who first contacted me, way back in August 2011 was Dr. Ron Klatz, Founder-President of the American Academy of Anti-Aging and Regenerative Medicine (A4M).

Last week, he asked me to edit this video of the first round table discussion of the American Association of Stem Cell Physicians, which had been live-streamed on August 11th and which he’d helped to moderate. It was shot completely unstaged and it was very rough-and-tumble and it needed a little cleaning-up. I said sure, without fully realizing what a treat I was in for, with this incredibly dynamic and inspiring group of scientists and physicians; who don’t normally speak to each other – let alone on camera – in a totally live, unscripted setting!

In 1996, Dr. Klatz and the A4M predicted that medical advancements were on pace to achieve life expectancies of 120 years or more, or what they call “Practical Immortality” by 2029. With the latest developments in stem cell technology and nutritional medicine, among others, this prediction is well on track.

A team of researchers from Baylor University, with assistance from staff at the Massachusetts Eye and Ear Infirmary, Harvard Medical School and the Dana-Farber Cancer Institute has developed and tested a smartphone app that is able to detect “white eye” in children by analyzing stored photographs. In their paper published in the journal Science Advances, the group describes how the app was developed and tested, and how well it works.

Most everyone has seen pictures of people seemingly possessed by the devil because their pupils glow red—this is caused by light bouncing off their retinas. However, such pictures sometimes produce white instead of red retinas. Sometimes it can happen due to ambient lighting conditions, but other times, it can indicate an eye ailment. Such problems can include retinoblastoma, a type of eye cancer, retinopathy, or even cataracts.

The idea for an app that could detect white eye came from the experience of one of the researchers, Brian Shaw, and his son, who developed retinoblastoma and subsequently lost an eye. The team developed the app and made it available to the public back in 2014, but it was not until more recently that the team decided to test the app to see how well it works.

The Healthy Life Extension Society: https://heales.org

Follow us on Twitter : https://twitter.com/_LongLongLife_
Follow us on Facebook : https://www.facebook.com/longlonglifedotorg/
Follow us on Linkedin : https://www.linkedin.com/company/22311577
Our Website : http://www.longlonglife.org

The Eurosymposium on Healthy Ageing (EHA) meeting for 3 days in Brussels proclaims the possibility and the imperative of a moonshot project to overcome all age-related diseases within 25 years by tackling aging as their root cause.
The world has already faced the variety of challenges caused by an ageing population and the so called “Silver tsunami”, but Following major discoveries in science and biomedicine in recent years we are now on the edge of a paradigm shift from treatment to prevention and an improvement in healthy longevity. The defeat of aging lies within our collective grasp. It’s time to seize this remarkable opportunity!

Day 2

Rejuvenation strategies

Aubrey de Grey

Electrical engineers at Duke University have devised a fully print-in-place technique for electronics that is gentle enough to work on delicate surfaces including paper and human skin. The advance could enable technologies such as high-adhesion, embedded electronic tattoos and bandages tricked out with patient-specific biosensors.

The techniques are described in a series of papers published online July 9 in the journal Nanoscale and on October 3 in the journal ACS Nano.

“When people hear the term ‘printed electronics,’ the expectation is that a person loads a substrate and the designs for an into a printer and, some reasonable time later, removes a fully functional electronic circuit,” said Aaron Franklin, the James L. and Elizabeth M. Vincent Associate Professor of Electrical and Computer Engineering at Duke.

Scientists at the University of California, Berkeley have used the CRISPR gene-editing tool to give fruit flies an evolutionary advantage they’ve never had before. By making just three small changes to a single gene, the team gave the flies the ability to effectively eat poison and store it in their bodies, protecting themselves from predators in the process.

Milkweed is a common plant that’s toxic to most animals and insects – but the monarch butterfly flies in the face of that plant’s defenses. The bug has evolved the ability to not only thrive on the poisonous plant, but turn it to its own advantage. It stores the toxins in its body, making it poisonous to any predators that might try to eat it.

And now, the UC Berkeley researchers have given fruit flies that ability for the first time. CRISPR has been used to edit the genes of insects, mammals and even humans, but the team says this is the first time a multicellular organism has been edited to endow it with new behaviors and adaptations to the environment. In this case, that means a new diet and a new defense mechanism against predators.

Drew Endy almost can’t talk fast enough to convey everything he has to say. It’s a wonderfully complex message filled with nuance, a kind of intricate puzzle box being built by a pioneer of synthetic biology who wants to fundamentally rejigger the living world.

Endy heads a research team at Stanford that is, as he puts it, building genetically encoded computers and redesigning genomes. What that means: he’s trying to engineer life forms to do useful things. Just about anything could come out of this toolkit: new foods, new materials, new medicines. So you are unlikely to find anyone who is more optimistic than he is about the potential for synthetic biology to solve big problems.

That’s what makes Endy so compelling when he worries about how the technology is being developed. Perhaps more than anyone else working in synthetic biology, Endy has tried to hold the community to account.

Too many hospitals provide medications according to the practicalities of their staffing schedules rather than the ideal dosing times for their patients, according to a new study led by experts at Cincinnati Children’s.

The study, published Oct. 1, 2019, in PNAS, was led by David Smith, MD, Ph.D., Divisions of Pediatric Otolaryngology and Pulmonary Medicine; Marc Ruben, Ph.D.; and John Hogenesch, Ph.D., Co-Director, Center for Circadian Medicine at Cincinnati Children’s.

The study examined the daily distribution of approximately 500,000 doses of 12 drugs in 1,486 inpatients at a major U.S. children’s hospital.