Toggle light / dark theme

Synthetic protocells can be made to move toward and away from chemical signals, an important step for the development of new drug-delivery systems that could target specific locations in the body. By coating the surface of the protocells with enzymes—proteins that catalyze chemical reactions—a team of researchers at Penn State was able to control the direction of the protocell’s movement in a chemical gradient in a microfluidic device. A paper describing the research appears November 18, 2019 in the journal Nature Nanotechnology.

“The is to have drugs delivered by tiny ‘bots’ that can transport the drug to the specific location where it is needed,” said Ayusman Sen, the Verne M. Willaman Professor of Chemistry at Penn State and the leader of the research team. “Currently, if you take an antibiotic for an infection in your leg, it diffuses throughout your entire body. So, you have to take a higher dose in order to get enough of the antibiotic to your leg where it is needed. If we can control the directional movement of a drug-delivery system, we not only reduce the amount of the drug required but also can increase its speed of delivery.”

One way to address controlling direction is for the drug-delivery system to recognize and move towards specific emanating from the infection site, a phenomenon called chemotaxis. Many organisms use chemotaxis as a survival strategy, to find food or escape toxins. Previous work had shown that enzymes undergo chemotactic movement because the reactions they catalyze produce energy that can be harnessed. However, most of that work had focused on positive chemotaxis, movement towards a . Until now, little work had been done looking at negative chemotaxis. “Tunable” chemotaxis—the ability to control movement direction, towards and away from different chemical signals—had never been demonstrated.

At the start of this decade, the federal government called out consumer DNA testing as a burgeoning scam industry. Little did we know how it would explode in popularity.

In 2010, the U.S. Government Accountability Office (GAO) published an investigative report that bashed consumer DNA test companies for misleading the public. It accused them of deceptively claiming their products could predict the odds of developing more than a dozen medical conditions; some even went as far to offer equally dubious dietary supplements. The report had followed a similar lambasting of the industry by the GAO in 2006.

New Scientist.


The technique, officially called emergency preservation and resuscitation (EPR), is being carried out on people who arrive at the University of Maryland Medical Centre in Baltimore with an acute trauma – such as a gunshot or stab wound – and have had a cardiac arrest. Their heart will have stopped beating and they will have lost more than half their blood. There are only minutes to operate, with a less than 5 per cent chance that they would normally survive.

Lawyers and doctors are typically paid more than manual laborers because of the relative shorter supply of lawyers and doctors, which is in part due to the number of years of training required to enter those professions and the corresponding value society attributes to those skills. But what will happen to their wages once the market is faced with an abundance of skilled labor? If anyone is able to upload legal or medical know-how to their brain and know just as much as the professionals in those fields, why pay a professional a higher wage?

Of course, certain skills, such as strategic judgment and contextual understanding, may be difficult, if not impossible, to digitize. But even the games of chess and Go, both complex games that require strategic decision-making and foresight, have now been conquered by AIs that taught themselves how to play—and beat—some of the best human players.

The technology’s potential for emancipation and human advancement is immense. But we—entrepreneurs, researchers, professionals, policymakers, and industry—must not lose sight of the social risks.

Regrowing bones is no easy task, but the world’s lightest solid might make it easier to achieve. Researchers have figured out a way to use hybrid aerogels, strong but ultralight materials, to prompt new bone tissue to grow and replace lost or damaged tissue.

Although bone cancer is a relatively rare disease (it accounts for less than 1% of all cancers), people who suffer from it often end up losing a lot of bone tissue and, in extreme cases, undergo amputation. The cancerous tissue has to be cut out, taking with it a large chunk of nearby healthy tissue to make sure that the cancer does not spread. This effectively removes the cancer, but also leaves the patient with a lot less bone than they started out with.

A recent study has used hybrid aerogels to restore the lost tissue by prompting bone regeneration. Aerogels are basically a combination of solid and gas. Think Jell-O, but one where the water has been slowly dried out and replaced completely by air. This slow and careful removing of liquid is what allows the gel to retain its shape instead of shriveling into a hard lump. The pairing of solid and gas makes aerogels extremely light and very porous. These two qualities make them exceptionally suitable to use as scaffolds, which can be used as physical roadmaps for the developing bone to follow as it grows.

View full lesson: http://ed.ted.com/lessons/can-we-eat-to-starve-cancer-william-li

William Li presents a new way to think about treating cancer and other diseases: anti-angiogenesis, preventing the growth of blood vessels that feed a tumor. The crucial first (and best) step: Eating cancer-fighting foods that cut off the supply lines and beat cancer at its own game.

Talk by WIlliam Li.