Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1969

Oct 13, 2019

Liz Parrish talk at RAADfest 2019 (05oct19)

Posted by in categories: biotech/medical, life extension

This year I had the privilege to record in full Liz Parrish talk delivered at RAADfest 2019 (Revolution Against Aging and Death Festival 2019), which took place in Las Vegas, NV from 3 to 6 of October.

During her talk, Liz tells us about recent developments in the field of gene therapy and what her company BioViva is doing to benefit society by harnessing the power of it.

Continue reading “Liz Parrish talk at RAADfest 2019 (05oct19)” »

Oct 13, 2019

Will We Survive Mars? — Glad You Asked S1 (E1)

Posted by in categories: biotech/medical, space

NASA says the first humans will set foot on Mars in the mid-2030’s. It will be the most dangerous mission any human has ever taken. Glad You Asked host Cleo Abram wants to know: What comes after that? Not how do we get there, but how will we survive once we do?
Note: There are several Fahrenheit measurements in this piece.
The metric conversions are:
At 7:53: 212 degrees Fahrenheit = 100 degrees Celsius
At 8:04: 98.6 degrees Fahrenheit = 37 degrees Celsius
At 8:45: −81 degrees Fahrenheit = −62.8 degrees Celsius

You choose — watch all episodes uninterrupted with YouTube Premium now, or wait to watch new episodes free with ads.

Continue reading “Will We Survive Mars? — Glad You Asked S1 (E1)” »

Oct 12, 2019

Researchers Turn CRISPR Into a Virus-Killing Machine

Posted by in categories: biotech/medical, genetics

On the surface, Ebola and the flu might not seem all that similar — one can cause organ failure or death, while the other usually just makes you feel really crummy — but they actually have the same underlying cause: an RNA-based virus.

That’s the type of virus behind some of the most common — and deadly — illnesses in the world, and researchers have just discovered a way to use the powerful gene-editing technology CRISPR in the fight against them.

On Thursday, a team lead by researchers from Harvard and MIT’s Broad Institute published a study in the journal Molecular Cell detailing their creation of CARVER (Cas13-Assisted Restriction of Viral Expression and Readout), a system that utilizes the CRISPR enzyme Cas13, which “naturally targets viral RNA in bacteria,” according to a Broad Institute press release.

Oct 12, 2019

A Month Before Stroke, Your Body Will Warn You With These 10 Signals

Posted by in categories: biotech/medical, health, neuroscience

A stroke occurs when blood flow to an area of the brain is suddenly cut off. The brain cells get deprived of oxygen and begin to die quickly. Having a stroke is a scary thought, but you can be mindful of your health to reduce the chances of having one.

Oct 12, 2019

Ghana launches second drone delivery base at Mampong

Posted by in categories: biotech/medical, drones, robotics/AI

President Nana Addo Dankwa Akufo-Addo on Thursday opened Ghana’s newest medical drone delivery base at Asante Mampong as part of his duty tour of the Ashanti region this week.

This marks the second of what will be four medical drone delivery bases that have been commissioned to help expand access to critical and life-saving medicines for people across Ghana.

Zipline, a California-based robotics company, operates the medical drone delivery service with support from Gavi, the Vaccine Alliance, the Bill & Melinda Gates Foundation, the UPS Foundation and other partners.

Oct 12, 2019

Controlling superconducting regions within an exotic metal

Posted by in categories: biotech/medical, computing, quantum physics

Researchers at EPFL have created a metallic microdevice in which they can define and tune patterns of superconductivity. Their discovery, which holds great promise for quantum technologies of the future, has just been published in Science.

In superconductors, electrons travel with no resistance. This phenomenon currently only occurs at very low temperatures. There are many , such as magnetic resonance imaging (MRI). Future technologies, however, will harness the total synchrony of electronic behavior in superconductors—a property called the phase. There is currently a race to build the world’s first quantum computer, which will use phases to perform calculations. Conventional superconductors are very robust and hard to influence, and the challenge is to find in which the can be easily manipulated in a device.

EPFL’s Laboratory of Quantum Materials (QMAT), headed by Philip Moll, has been working on a specific group of unconventional superconductors known as heavy fermion materials. The QMAT scientists, as part of a broad international collaboration between EPFL, the Max Planck Institute for Chemical Physics of Solids, the Los Alamos National Laboratory and Cornell University, made a surprising discovery about one of these materials, CeIrIn5.

Oct 11, 2019

ANNOUNCING THE LONGEVITY FILM COMPETITION Please join in the crusade of eliminating age-related disease by making a video, and not only potentially help save lots of lives, but also win the first prize of $10,000!

Posted by in categories: biotech/medical, life extension

Second prize is a trip to meet Dr. Aubrey de Grey! This international (short) film competition is presented by the SENS Research Foundation, the International Longevity Alliance and Heales. The winning film will be chosen by our remarkable jury. For more information on how to compete and to sign up please visit www.longevityfilmcompetition.com

Oct 11, 2019

DNA Damage Leads to Epigenetic Alterations

Posted by in categories: biotech/medical, genetics, life extension

A team of researchers, including Dr. David Sinclair, has recently made a new study available as a preprint prior to peer review and publication in the journal Cell.

DNA damage and the double-strand break

Two of the primary hallmarks of aging are genomic instability, which consists of damage to our DNA, and epigenetic alterations, which are the changes in gene expression that occur with aging and are harmful to normal cell function.

Oct 11, 2019

Optimizing Biological Age: White Blood Cells

Posted by in categories: biotech/medical, life extension

Circulating levels of white blood cells (WBCs) are one of the 10 variables used to quantify biological age with PhenoAge (https://michaellustgarten.com/2019/09/09/quantifying-biological-age). The reference range for WBCs is 4.5 – 11 *109 cells/L, but within that range, what’s optimal?

Several studies have reported that WBCs greater than 5 are associated with an increased all-cause mortality risk (Ahmadi-Abhari et al. 2013, Samet et al. 2005, Weijenberg et al. 1996). While observational studies are important for identifying associations with mortality risk, stronger evidence is obtained when the data from the same subjects are tracked for a time period. Perhaps the best evidence for the association between WBCs with mortality risk comes from the Baltimore Longitudinal Study on Aging (BLSA), which studied 2803 men and women over a period of 44 years (Ruggiero et al. 2007). As shown below, subjects that had circulating WBCs between 3.5 – 6 had the best survival, whereas WBCs below 3.5, between 6 – 10, and 10+ each had successively higher risk. The 0.5 point on the y-axis of the curve (survival) is defined as 50% mortality, and is the point where half of the study subjects died, whereas the remaining 50% were still alive.

Oct 11, 2019

Over 150,000 Americans Have Rare DNA Fluke and Don’t Know It, Study of 23andMe Data Finds

Posted by in categories: biotech/medical, genetics, health

A supposedly rare genetic quirk might be more common than we think, according to new research out Thursday. The study, based largely on 23andMe data, suggests that one in every 2,000 people are born with two copies of a gene from only a single parent, often with no serious health consequences.

Ordinarily, a person’s egg or sperm cells have one set of the genes that make up their chromosomes (other cells in our body have two sets). When a sperm fertilizes an egg, the resulting fertilized zygote will then have two sets of 23 chromosomes, one from each parent, making 46 chromosomes in total. If all goes well, the zygote multiplies and divides until it becomes a person, one with an even allocation of gene copies from both parents.