Toggle light / dark theme

Australian, American and British researchers conducted a prospective analysis of light levels in almost 89 thousand people and concluded that more light exposure at night and less during the day are associated with an increased risk of death from all causes.


Light enhances or disrupts circadian rhythms, depending on the timing of exposure. Circadian disruption contributes to poor health outcomes that increase mortality risk. Whether personal light exposure predicts mortality risk has not been established. We therefore investigated whether personal day and night light, and light patterns that disrupt circadian rhythms, predicted mortality risk. UK Biobank participants (N = 88,905, 62.4 ± 7.8 y, 57% female) wore light sensors for 1 wk. Day and night light exposures were defined by factor analysis of 24-h light profiles. A computational model of the human circadian pacemaker was applied to model circadian amplitude and phase from light data. Cause-specific mortality was recorded in 3,750 participants across a mean (±SD) follow-up period of 8.0 ± 1.0 y.

Would you like to see more applications for Neuralink in the future? Share your thoughts in the comments.

Elon Musk’s brain technology startup, Neuralink, reported that its implant is functioning well in a second trial patient, identified as Alex. This implant is designed to help paralyzed patients control digital devices through thought alone. Unlike the first patient, Noland Arbaugh, who experienced thread retraction issues post-surgery, Alex has not faced similar problems. Neuralink implemented new measures to prevent such complications, including reducing brain motion during surgery. Both patients have been able to use the implant to perform tasks like playing video games, browsing the internet, and even designing 3D objects.

Women worldwide could see better treatment with new AI technology, which enables better detection of damaged cells and more precisely predicts the risk of getting breast cancer, shows new research from the University of Copenhagen.

Breast cancer is one of the most common types of cancer. In 2022, the disease caused 670,000 deaths worldwide. Now, a new study from the University of Copenhagen shows that AI can help women with improved treatment by scanning for irregular-looking cells to give better risk assessment.

The study, published in The Lancet Digital Health, found that the AI technology was far better at predicting the risk of cancer than current clinical benchmarks for breast cancer risk assessment.

An achievement that was deemed impossible has successfully become accomplished. For the first time in history, DNA can be edited. One of the goals is to be able to get rid of genetic diseases. This whole concept in genomic science has opened up a whole new revolutionary way of dealing with such critical health issues. There is a possibility that illnesses that were once incurable have a chance to be curable.

MedlinePlus provides a definition and states that a collection of tools known as genome editing, or gene editing, allows researchers to alter an organism’s DNA. These technologies enable the addition, deletion, or modification of genetic material at specific genomic regions. A person’s DNA can be altered through gene editing to fix mistakes that lead to illnesses.

CRISPR-Cas9, short for CRISPR-associated protein 9 and clustered regularly interspaced short palindromic repeats, is a well-known example as one of the approaches used and developed by scientists to edit DNA. The scientific community is very excited about the CRISPR-Cas9 system since it is more accurate, efficient, quicker, and less expensive than existing genome editing techniques.

Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation – inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.

GRAPHICAL ABSTRACT

To access the video, kindly visit.


Dive into the fascinating world of GlycoRNA in this insightful video! GlycoRNA, a newly emerging field at the intersection of glycobiology and RNA research, explores how glycan modifications on RNA molecules can influence gene expression and cellular function. Join us as we break down the basics of glycoRNA, its role in health and disease, and its potential applications in medicine and biotechnology.
References: https://zfangcs.wordpress.com/2021/06
https://answers.childrenshospital.org
Thank You For Watching.
Please Like And Subscribe to Our Channel: / easypeasylearning.
Like Our Facebook Page: / learningeasypeasy.
Join Our Facebook Group: / 460057834950033
Support Our Channel: / supereasypeasy.

Summary: Researchers have discovered that the protein USP50 regulates DNA replication by managing which enzymes—nucleases or helicases—cleave or unwind DNA strands during replication. This control is crucial for stable replication, especially when the process encounters issues that need restarting. When USP50 is absent, cells struggle to coordinate enzyme use, leading to replication errors and potential genetic instability.

The findings provide new insights into genome maintenance and may help explain some hereditary conditions, such as early-onset aging and certain cancers. Understanding USP50’s role opens doors to potential therapeutic strategies aimed at protecting DNA integrity.

Fortunately, the past decade has experienced a boom, with over 200 startups bringing novel cancer therapies—primarily antibodies, viruses, or cells—into clinical trials aiming to find alternatives to toxic chemotherapy. Despite these innovations, chemotherapy remains an essential yet toxic part of cancer care. In Pittsburgh, a small team of scientist-entrepreneurs and oncologists started meeting every Friday morning before work, collaborating to search for a new chemistry, one that could replace toxic chemotherapies. Their search soon focused on compelling research about novel ultra-small nanomedicine chemistry that carried potent drugs deep into solid tumors while sparing healthy organs.

This new nanomedicine chemistry fascinated Dr. Sam Rothstein, a scientist-entrepreneur with 20+ years of nanomedicine research experience spanning academia and industry. “We could make a real positive impact on patients,” says Rothstein. “We know that nanomedicines, which keep potent therapies out of healthy organs, improve quality of life. But this novel ultrasmall chemistry could go even further, saving lives by reaching remote cancer cells that current therapies can’t touch.”

Dr. Rothstein set to work building a new company, calling on connections made over a 10+-year career as a life science startup CEO and CSO, where he founded and grew two nanomedicine startups from academic discoveries. After months of market, regulatory, and business research, Duo Oncology was born.