Toggle light / dark theme

For the first time, researchers have succeeded in creating strong coupling between quantum systems over a great distance. They accomplished this with a novel method in which a laser loop connects the systems, enabling nearly lossless exchange of information and strong interaction between them. In the journal Science, physicists from the University of Basel and University of Hanover reported that the new method opens up new possibilities in quantum networks and quantum sensor technology.

Quantum technology is currently one of the most active fields of research worldwide. It takes advantage of the special properties of quantum mechanical states of atoms, light, or nanostructures to develop, for example, novel sensors for medicine and navigation, networks for information processing and powerful simulators for materials sciences. Generating these quantum states normally requires a between the systems involved, such as between several atoms or nanostructures.

Until now, however, sufficiently strong interactions were limited to short distances. Typically, two systems had to be placed close to each other on the same chip at low temperatures or in the same vacuum chamber, where they interact via electrostatic or magnetostatic forces. Coupling them across larger distances, however, is required for many applications such as or certain types of sensors.

As the number of confirmed COVID −19 cases worldwide approaches 4 million and the pandemic could be with us for months or years, we look at who can access drugs like remdesivir, being developed by pharmaceutical giant Gilead, which has the patent for the drug and is poised to make massive profits. We look at how much drugs like remdesivir will cost, and who can access them, with writer Achal Prabhala, coordinator of the AccessIBSA project, which campaigns for access to medicines in India, Brazil and South Africa.

This is viewer supported news. Please do your part today.

The new coronavirus invades the body through a spike protein that lives on the surface of virus cells. The S protein, as it’s called, binds to a receptor called angiotensin-converting enzyme 2 (ACE2) on a healthy cell’s surface. Once attached, the cells fuse and the virus is able to infect the healthy cell.

ACE2 receptors are present on cells in many places throughout the body, and especially in the lungs. Cells in the lungs are also some of the first to encounter the virus, since the primary form of transmission is thought to be breathing in droplets after an infected person has coughed or sneezed.

That’s why it was necessary to upgrade Stem Cell Neurotherapy for COVID-19 by adding T-Cells, B-Cells, and Natural Killer Cells to the arsenal. It was not enough to just regenerate new lung cells to replace the lung cells infected by COVID-19, but the COVID-19 Virus Cells had to be attacked and destroyed in order to prevent them from invading and infecting the newly regenerated lung cells.

So, that’s where the idea of using T-Cells, B-Cells, and Natural Killer Cells, usually used in attacking cancer cells, came from.


Few cases and no deaths. I would listen to those who have success, not those who have failure. Scientists from failing countries have warned not to take just about everything to fight this. The WHO’s abysimal performance shows they are the last people anyone should listen to. Show the efficacy of WHO advice, or even ventilators for that matter vs Continuous Positive Airway Pressure (CPAP). If people want to use something to fight this let them, you have the choice of not using it.


Madagascar’s President Andry Rajoelina tries Covid-Organics at a launch ceremony in Antananarivo on 20 April. Several other African leaders have expressed an interest in the unproven treatment.

Diagnosing COVID-19 more quickly, easily, and broadly

With COVID-19 rapidly spreading around the planet, the efficient detection of the CoV2 virus is pivotal to isolate infected individuals as early as possible, support them in whatever way possible, and thus prevent the further uncontrolled spread of the disease. Currently, the most-performed tests are detecting snippets of the virus’ genetic material, its RNA, by amplifying them with a technique known as “polymerase chain reaction” (PCR) from nasopharyngeal swabs taken from individuals’ noses and throats.

The tests, however, have severe limitations that stand in the way of effectively deciding whether people in the wider communities are infected or not. Although PCR-based tests can detect the virus’s RNA early on in the disease, test kits are only available for a fraction of people that need to be tested, and they require trained health care workers, specialized laboratory equipment, and significant time to be performed. In addition, health care workers that are carrying out testing are especially prone to being infected by CoV2. To shorten patient-specific and community-wide response times, Wyss Institute researchers are taking different parallel approaches:

No se aceptan los comentarios con contenidos, enlaces o nombres de usuarios que se consideren insultantes. –No se aceptan los comentarios que apoyen violaciones de los derechos humanos. –No se admitirán los ataques ni insultos a los otros participantes en el sistema de comentarios. –No se admiten comentarios con contenidos o enlaces que se consideren publicidad, spam, pornografía o material protegido por derechos de autor. –Los comentarios sin sentido o repetidos serán eliminados. –Medicina21 se reserva el derecho a eliminar los comentarios que no se ajusten a estas normas.

In 2015, Elon Musk announced that his company, SpaceX, would be deploying satellites to orbit that would provide high-speed broadband internet access to the entire world. Known as Starlink, SpaceX began deploying this constellation in May of 2019 with the launch of the first 60 satellites. As of April 22, a total of 422 satellites have been added to the Starlink constellation, and the response hasn’t been entirely positive.

In addition to fears that we’re adding to the problem of “space junk,” there are also those who’ve expressed concern that Starlink and other constellations could have a negative impact on astronomy. In response, SpaceX recently announced that it will be instituting changes in how the satellites are launched, how they orbit the Earth, and even how reflective they are in order to minimize the impact they have on astronomy.

These changes were the subject of a presentation made during the Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020) hosted by the National Academy of Sciences, Engineering, and Medicine. As part of the Optical Interference from Satellite Constellations Meeting held on Monday, April 27th, the Starlink Panel (which included Musk) presented how the company hopes to minimize light pollution caused by their constellation.

A team of materials scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) – scientists who normally spend their time researching things like high-performance materials for thermoelectrics or battery cathodes – have built a text-mining tool in record time to help the global scientific community synthesize the mountain of scientific literature on COVID-19 being generated every day.

The tool, live at covidscholar.org, uses natural language processing techniques to not only quickly scan and search tens of thousands of research papers, but also help draw insights and connections that may otherwise not be apparent. The hope is that the tool could eventually enable “automated science.”

“On Google and other search engines people search for what they think is relevant,” said Berkeley Lab scientist Gerbrand Ceder, one of the project leads. “Our objective is to do information extraction so that people can find nonobvious information and relationships. That’s the whole idea of machine learning and natural language processing that will be applied on these datasets.”

Circa 2013


“Nanotechnology offers unprecedented possibilities for progress—defeating poverty, starvation, and disease, opening up outer space, and expanding human capacities. But it also brings unprecedented risks—the specter of devastating wars fought with far more powerful weapons of mass destruction.” — Chris Phoenix, Director of Research, Center for Responsible Nanotechnology.