Toggle light / dark theme

One-Minute Bursts of Activity During Daily Tasks Could Prolong Your Life

Summary: Three to four one-minute bouts of vigorous physical activity a day, such as running for a bus or walking fast to complete tasks reduces the risk of all-cause and cancer-related death by 40%, and a 49% reduced risk of death from cardiovascular disease.

Source: University of Sydney.

In good news for those who don’t like playing sport or going to the gym, new research finds just three to four one-minute bursts of huffing and puffing during daily tasks is associated with large reductions in the risk of premature death, particularly from cardiovascular disease.

Scientists Discover a Unique Gut Bacteria That May Cause Arthritis

Researchers at the University of Colorado School of Medicine have found that a unique bacteria found in the gut may be responsible for causing rheumatoid arthritis (RA) in patients who are already predisposed to the autoimmune disease.

A group of researchers from the Division of Rheumatology worked on the study under the leadership of Kristine Kuhn, MD, Ph.D., an associate professor of rheumatology. The study was recently published in the journal Science Translational Medicine. Meagan Chriswell, a medical student at CU, is the paper’s lead author.

“Work led by co-authors Drs. Kevin Deane, Kristen Demoruelle, and Mike Holers here at CU helped establish that we can identify people who are at risk for RA based on serologic markers, and that these markers can be present in the blood for many years before diagnosis,” Kuhn says. “When they looked at those antibodies, one is the normal class of antibody we normally see in circulation, but the other is an antibody that we usually associate with our mucosa, whether it be the oral mucosa, the gut mucosa, or the lung mucosa. We started to wonder, ‘Could there be something at a mucosal barrier site that could be driving RA?’”

3 Lessons From Digital Natives to Boost Companies’ Transformation Journeys

Check out the on-demand sessions from the Low-Code/No-Code Summit to learn how to successfully innovate and achieve efficiency by upskilling and scaling citizen developers. Watch now.

Effects from the COVID-19 pandemic and the resulting economic disruption still loom large over businesses around the world.

Digital-native organizations (DNOs) already using cloud infrastructures and mobile apps to conduct business with customers adapted quickly to the new digital normal. However, despite their best efforts, some established enterprises remain stuck in their digital transformations and cloud adoption journeys. Companies that have struggled to adapt face a huge — and perhaps existential — challenge on how to remain relevant in this new digitally-oriented world.

EctoLife: The World’s First Artificial Womb Facility

The world’s first artificial womb facility, EctoLife, will be able to grow 30,000 babies a year. It’s based on over 50 years of groundbreaking scientific research conducted by researchers worldwide.

Join me on:
- TikTok: https://www.tiktok.com/@hashem.alghaili.
- Instagram: https://www.instagram.com/hashem.alghaili/
- Facebook: https://www.facebook.com/ScienceNaturePage/
- LinkedIn: https://www.linkedin.com/in/hashem-al-ghaili-1b30679b/
- Twitter: https://twitter.com/HashemGhaili.

#EctoLife #ArtificialWomb #Genetics

How AI found the words to kill cancer cells

Using new machine learning techniques, researchers at UC San Francisco (UCSF), in collaboration with a team at IBM Research, have developed a virtual molecular library of thousands of “command sentences” for cells, based on combinations of “words” that guided engineered immune cells to seek out and tirelessly kill cancer cells.

The work, published online Dec. 8, 2022, in Science, represents the first time such sophisticated computational approaches have been applied to a field that until now has progressed largely through ad hoc tinkering and engineering cells with existing—rather than synthesized—molecules.

The advance allows scientists to predict which elements—natural or synthesized—they should include in a cell to give it the precise behaviors required to respond effectively to complex diseases.

Alzheimer’s tied to cholesterol, abnormal nerve insulation

Earlier research by Dr. Li-Huei Tsai of the Massachusetts Institute of Technology and others found that APOE4 might raise Alzheimer’s risk by altering lipid metabolism in certain brain cells. But the underlying details of the process remained unclear.

To build on these findings, the team conducted a multi-pronged study that assessed gene activity of all major cell types in post-mortem human brain tissue from 32 men and women who had one, two, or no copies of the APOE4 gene. Results were published in Nature on November 24, 2022.

The researchers found that APOE4 affected gene expression across all measured cell types. The team then took a closer look at genes related to cholesterol and other lipids. Cholesterol-manufacturing genes were overly expressed, and cholesterol-transporting genes dysregulated, in brain cells called oligodendrocytes with the APOE4 gene. Oligodendrocytes are found in the brain and spinal cord. They make and maintain a fatty substance called myelin that surrounds and insulates long nerve fibers. The abnormalities were more extreme in oligodendrocytes with two copies of APOE4 rather than one.

Double embryo transfer in assisted reproduction found to increase the risk of complications in single births

The risk of complications in assisted reproduction is higher when two embryos are transferred, instead of one embryo. This has been shown in a study published in the journal JAMA Pediatrics, which included all births in Sweden 2007–2017.

Fertility treatments using assisted reproduction in Sweden are among the safest in the world regarding risks for the mother and children. A national recommendation to only transfer one embryo in assisted reproduction was introduced in 2003, aiming to decrease the risk of multiple pregnancies and their related complications during and delivery.

In certain cases, two are still transferred in order to increase the chance of pregnancy while the risk of multiple pregnancy remains low. Thus, many of the treatments with double embryo transfer result in single pregnancies. Many patients wish to have two embryos transferred to increase their chances of pregnancy, but there is a lack of data on potential risks with transferring two embryos when the treatment results in the of a single child.

Flipping the switch: Scientists shed new light on genetic changes that turn ‘on’ cancer genes

Cancer, caused by abnormal overgrowth of cells, is the second-leading cause of death in the world. Researchers from the Salk Institute have zeroed in on specific mechanisms that activate oncogenes, which are altered genes that can cause normal cells to become cancer cells.

Cancer can be caused by , yet the impact of specific types such as structural variants that break and rejoin DNA, can vary widely. The findings, published in Nature on December 7, 2022, show that the activity of those mutations depends on the distance between a particular gene and the sequences that regulate the gene, as well as on the level of activity of the regulatory sequences involved.

This work advances the ability to predict and interpret which genetic mutations found in cancer genomes are causing the disease.

A new computational system streamlines the design of fluidic devices

Combustion engines, propellers, and hydraulic pumps are examples of fluidic devices—instruments that utilize fluids to perform certain functions, such as generating power or transporting water.

Because fluidic devices are so complex, they are typically developed by experienced engineers who manually design, prototype, and test each apparatus through an iterative process that is expensive, time-consuming, and labor-intensive. But with a new system, users only need to specify the locations and speeds at which fluid enters and exits the device. The computational pipeline then automatically generates an optimal design that achieves those objectives.

The system could make it faster and cheaper to design fluidic devices for all sorts of applications, such as microfluidic labs-on-a-chip that can diagnose disease from a few drops of blood or artificial hearts that could save the lives of transplant patients.

/* */