A lithium-ion battery made from three droplets of hydrogel is the smallest soft battery of its kind – and it could be used in biocompatible and biodegradable implants.
Category: biotech/medical – Page 125
In a laboratory set-up simulating the human stomach and intestine, researchers at the University of Amsterdam have explored the fate of plastic nanoparticles during gastrointestinal digestion. In their paper published in the October issue of Chemosphere, they report how a range of model plastic nanoparticles interact with digestive enzymes and form agglomerates.
The future of therapeutic apheresis & transfusion medicine — dr. tina ipe, MD, MPH — CEO, regen med clinic.
Dr. Tina Ipe, MD, MPH is Chief Executive Officer at Regen Med Clinic (https://www.regenmed.vip/), a medical practice which provides multi-specialty infusions, cutting-edge treatments such as therapeutic apheresis (plasmapheresis and collections), as well as novel aesthetic treatments, for patients with a variety chronic illnesses.
Dr. Ipe is a board-certified physician and clinical researcher. Before entering private practice, she was Chief Medical Officer at the Oklahoma Blood Institute, Associate Medical Director at Houston Methodist Hospital, and Division Director at University of Arkansas for Medical Sciences (UAMS). She is an expert in the fields of blood disorders, immunology, therapeutic apheresis, blood banking, and transfusion medicine. She has published more than 50 peer-reviewed manuscripts and book chapters.
Actin, a family of proteins that help give cells their shape, are abundant throughout the body.
Humans aren’t the only ones who grow forgetful as they age—fruit flies do, too. But because fruit flies have a lifespan of only about two months, they can be a useful model for understanding the cognitive decline that comes with aging.
A new study published in Nature Communications shows that when a common cell structural protein called filamentous actin, or F-actin, builds up in the brain, it inhibits a key process that removes unnecessary or dysfunctional components within cells, including DNA, lipids, proteins and organelles.
The resulting accumulation of waste diminishes neuronal functions and contributes to cognitive decline. By tweaking a few specific genes in aging fruit flies’ neurons, the researchers prevented F-actin buildup, maintained cellular recycling and extended the healthy lifespan of fruit flies by approximately 30%.
There are rare cells in the gut called enteroendocrine cells (EECs) that could be manipulated in a variety of ways to detect or treat disease.
The trillions of microbes in our gastrointestinal tract, known as the gut microbiome, are crucial to the body; the gut microbiome aids in digestion, nutrient absorption, and influences our health in different ways. But the body also has to be protected from all of those microbes, which are kept behind a tight barrier. But if the intestinal barrier is dysfunctional, or leaky, serious problems can arise.
There are cells in the gut called enteroendocrine cells (EECs) that can generate hormones, which may have a variety of effects on the body. EECs release hormones in response to cues like food intake and stomach stretching. The hormones can then influence physiological processes related to digestion or appetite. Scientists have now found receptors on EECs that control hormone release. It may one day be possible to alter these receptors to treat disease. The research has been reported in Science.
Organization runs deep in our family tree, if we use the literal definition of “organize”: to be furnished with organs. Eukaryotes emerged billions of years ago, bringing with them the copious benefits of compartmentalization.
All modern multicellular life — all life that any of us regularly see — is made of cells with a knack for compartmentalization. Recent discoveries are revealing how the first eukaryote got its start.
One prevailing hypothesis is that physical fitness mitigates structural brain changes that contribute to cognitive decline. Recent evidence points to a potential role involving myelin —the insulating sheath surrounding neurons that is crucial for efficient neural signaling and overall cognitive health. Myelination facilitates rapid signal transmission and supports neural network integrity.
The degeneration of myelin in the brain is increasingly recognized as a critical factor contributing to disruptions in neural communication, which may play a significant role in the cognitive decline observed in Alzheimer’s disease and other neurodegenerative disorders. Emerging research suggests that myelin breakdown may even precede the formation of amyloid-beta plaques and neurofibrillary tangles—the hallmark pathological features of Alzheimer’s disease. Advanced imaging studies have detected early myelin degeneration in individuals who later develop Alzheimer’s, indicating that myelin damage could be an initial event in the disease’s progression.
Age-related deterioration of myelin is closely associated with cognitive decline. Reduced white matter integrity—often resulting from myelin damage—is correlated with declines in memory, executive function, and processing speed in older adults. As myelin degradation leads to the slowing of cognitive processes and disrupts the synchronization of neural networks, preserving myelin integrity is essential for sustaining cognitive health across the lifespan.
What keeps some immune systems youthful and effective in warding off age-related diseases? In a new paper published in Cellular & Molecular Immunology, USC Stem Cell scientist Rong Lu and her collaborators point the finger at a small subset of blood stem cells, which make an outsized contribution to maintaining either a youthful balance or an age-related imbalance of the two main types of immune cells: innate and adaptive.
Innate immune cells serve as the body’s first line of defense, mobilizing a quick and general attack against invading germs. For germs that evade the body’s innate immune defenses, the second line of attack consists of adaptive immune cells, such as B cells and T cells that rely on their memory of past infections to craft a specific and targeted response. A healthy balance between innate and adaptive immune cells is the hallmark of a youthful immune system—and a key to longevity.
“Our study provides compelling evidence that when a small subset of blood stem cells overproduces innate immune cells, this drives the aging of the immune system, contributes to disease, and ultimately shortens the lifespan,” said Lu, who is an associate professor of stem cell biology and regenerative medicine, biomedical engineering, medicine, and gerontology at USC, and a Leukemia & Lymphoma Society Scholar. Lu is also a member of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the USC Norris Comprehensive Cancer Center at the Keck School of Medicine of USC.
The generation and maintenance of protective immunity is a dynamic interplay between host and environment that is impacted by age. Understanding fundamental changes in the healthy immune system that occur over a lifespan is critical in developing interventions for age-related susceptibility to infections and diseases. Here, we use multi-omic profiling (scRNA-seq, proteomics, flow cytometry) to examined human peripheral immunity in over 300 healthy adults, with 96 young and older adults followed over two years with yearly vaccination. The resulting resource includes scRNA-seq datasets of 16 million PBMCs, interrogating 71 immune cell subsets from our new Immune Health Atlas. This study allows unique insights into the composition and transcriptional state of immune cells at homeostasis, with vaccine perturbation, and across age. We find that T cells specifically accumulate age-related transcriptional changes more than other immune cells, independent from inflammation and chronic perturbation. Moreover, impaired memory B cell responses to vaccination are linked to a Th2-like state shift in older adults’ memory CD4 T cells, revealing possible mechanisms of immune dysregulation during healthy human aging. This extensive resource is provided with a suite of exploration tools at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ to enhance data accessibility and further the understanding of immune health across age.
A.W.G. serves on the scientific advisory boards of ArsenalBio and Foundery Innovations.
In 2017, Jacob Haendel was living a normal life as a head chef in…
A paralysed man who had an extreme form of locked-in syndrome and heard a nurse say he was “brain dead” has become the first ever to recover after hearing medical professionals debating whether or not to switch off his life support.
In 2017, Jacob Haendel was living a normal life as a head chef in Boston, Massachusetts but in the space of a few weeks, his life was turned upside down after he was diagnosed with acute toxic progressive leukoencephalopathy, which progressed into locked-in syndrome and forced his body would slowly shut down. An extreme form of locked-in syndrome is a condition where a patient is aware but cannot move or communicate verbally due to complete paralysis and can be caused by brain trauma, infection or exposure to toxins.
It is not known exactly how Jacob developed the condition, though he says his life as a chef consuming certain chemicals “wilfully and otherwise” may have been a factor. He ended up paralysed, unable to talk or blink within a few months and, could hear hospital staff deliberating over switching off machines.