Toggle light / dark theme

Tumors find different ways to avoid immune cell detection and proliferate in their environment. Antitumor immune cells will initially recognize and target the growing tumor; however, different mutations and adaptive mechanisms allow the cancer to persist. For example, it is well documented that tumors secrete different proteins to suppress immune cell activity. In other words, these proteins prevent healthy immune cells from properly functioning. Researchers focus on different aspects of immune cell suppression to allow cancer-targeting cells, known as T cells, to appropriately recognize and stop tumor growth. Previously, it was discovered that lactic acid is generated and secreted by the tumor cells and aids in their progression. Specifically, lactic acid suppresses T cells and prevents immune cells from reaching the tumor. Lactic acid generates a low pH level in the tumor microenvironment that makes it difficult for immune cells to properly function. Lactic acid fermentation or production was also found to limit therapeutic efficacy and elicit cancer drug resistance.

The limitation of cancer immunotherapy is due to the dysregulated metabolism or energy uptake generated by lactic acid. Immune cells switch “off” their antitumor activity, which allows cancers to progress. The study of these different metabolic processes is difficult because of a cell’s ability to change nutrient breakdown instantly. Therefore, scientists have trouble isolating cells in their natural state without disrupting the cell’s metabolic integrity. Although metabolism is difficult to study, scientists are working to understand more about lactic acid and its effect on immune cells. In this context, researchers hope to develop stronger immunotherapies that elicit a robust and durable antitumor response.

A recent study in Nature Immunology, by Dr. Greg Delgoffe and others, discovered that tumor-infiltrating T cells in the tumor microenvironment uptake lactic acid through a specific membrane transporter that reduces their function. Delgoffe is a professor in the Department of Immunology at the University of Pittsburgh and a member of the University of Pittsburgh Cancer Institute. His work focuses on T cell metabolism in the tumor microenvironment and how physicians can leverage these processes to overcome therapeutic limitations.

Johns Hopkins University-led researchers, working with the Biomarkers for Older Controls at Risk for Dementia (BIOCARD) cohort, have found that certain factors are linked to faster brain shrinkage and quicker progression from normal thinking abilities to mild cognitive impairment (MCI). People with type 2 diabetes and low levels of specific proteins in their cerebrospinal fluid showed more rapid brain changes and developed MCI sooner than others.

Long-term studies tracking changes over many years are rare but valuable. Previous research mostly provided snapshots in time, which can’t show how individual brains change over the years. By following participants for up to 27 years (20-year median), this study offers new insights into how health conditions might speed up brain aging.

In a study, “Acceleration of Brain Atrophy and Progression From Normal Cognition to Mild Cognitive Impairment,” published in JAMA Network Open, researchers used the BIOCARD cohort to examine associated with the acceleration of brain atrophy and progression from normal cognition to MCI. An Invited Commentary is also available.

A team of researchers led by Rice University’s Jacob Robinson and the University of Texas Medical Branch’s Peter Kan has developed a technique for diagnosing, managing and treating neurological disorders with minimal surgical risks. The team’s findings were published in Nature Biomedical Engineering.

While traditional approaches for interfacing with the nervous system often require creating a hole in the skull to with the brain, the researchers have developed an innovative method known as endocisternal interfaces (ECI), allowing for electrical recording and stimulation of neural structures, including the brain and , through (CSF).

“Using ECI, we can access multiple brain and spinal cord structures simultaneously without ever opening up the skull, reducing the risk of complications associated with traditional surgical techniques,” said Robinson, professor of electrical and computer engineering and bioengineering.

Research from Yale School of Medicine indicates a strong link between air pollution levels and eczema prevalence in the U.S.

The study found that residents in high PM2.5 areas are twice as likely to develop eczema, suggesting significant health implications of air pollution on skin conditions.

A new study published today, November 13, 2024, in the journal PLOS ONE has found that people living in areas with higher air pollution are more likely to have eczema. Led by Dr. Jeffrey Cohen of Yale School of Medicine, the study explores the potential environmental impact of industrialization on skin health.

Researchers at the University of Minnesota have developed a new material poised to revolutionize the next generation of high-power electronics, making them faster, more transparent, and more efficient. This engineered material enables electrons to move at higher speeds while staying transparent to both visible and ultraviolet light, surpassing previous performance records.

The research, published in Science Advances, a peer-reviewed scientific journal, marks a significant leap forward in semiconductor design, which is crucial to a trillion-dollar global industry expected to continue growing as digital technologies expand.

Semiconductors power nearly all electronics, from smartphones to medical devices. A key to advancing these technologies lies in improving what scientists refer to as “ultra-wide band gap” materials. These materials can conduct electricity efficiently even under extreme conditions. Ultra-wide band gap semiconductors enable high-performance at elevated temperatures, making them essential for more durable and robust electronics.

There is a challenge related to prostate cancer from cancer cells that form resistance to treatments as the disease progresses. For medical science, these resistance mechanisms are not yet fully understood.

A new study by the University of Eastern Finland has filled some of this knowledge gap. The scientists found that inflammation-promoting immune cells, M1 macrophages, can transform cancer cells into stem-like cells and thus immune to treatment.

The study examined the impact of factors promoting inflammation in a tumour microenvironment on the progression of prostate cancer. Researchers focused particularly on the role of M1 and M2 macrophages in the tumour microenvironment. Macrophages are immune cells whose large number in the tumour area is often a sign of poor prognosis in relation to prostate cancer. These white blood cells stimulate the action of other immune system cells.

Summary: A recent study offers new insights into how brain regions coordinate during rest, using resting-state fMRI (rsfMRI) and neural recordings in mice. By comparing blood flow patterns with direct neural activity, researchers found that some brain activity remains “invisible” in traditional rsfMRI scans. This hidden activity suggests that current brain imaging techniques may miss key elements of neural behavior.

The findings, potentially applicable to human studies, may refine our understanding of brain networks. Further research could improve the accuracy of interpreting brain activity.

This study explores how muscle contractions, such as those that occur during exercise, influence motor neurons—the cells responsible for controlling muscle movement.


There’s no doubt that exercise does a body good. Regular activity not only strengthens muscles but can bolster our bones, blood vessels, and immune system.

Now, MIT engineers have found that exercise can also have benefits at the level of individual neurons. They observed that when muscles contract during exercise, they release a soup of biochemical signals called myokines.

In the presence of these -generated signals, neurons grew four times further compared to neurons that were not exposed to myokines. These cellular-level experiments suggest that exercise can have a significant biochemical effect on nerve growth.