Toggle light / dark theme

A genomic test developed at UC San Francisco to rapidly detect almost any kind of pathogen—virus, bacteria, fungus or parasite—has proved successful after a decade of use.

The test has the potential to vastly improve care for neurological infections that cause diseases like meningitis and encephalitis, as well as speed up the detection of new viral pandemic threats. It uses a powerful genomic sequencing technique, called metagenomic next-generation sequencing (mNGS).

Rather than looking for one type of pathogen at a time, mNGS analyzes all the nucleic acids, RNA and DNA, that are present in a sample.

It takes years of intense study and a steady hand for humans to perform surgery, but robots might have an easier time picking it up with today’s AI technology.

Researchers at Johns Hopkins University (JHU) and Stanford University have taught a robot surgical system to perform a bunch of surgical tasks as capably as human doctors, simply by training it on videos of those procedures.

The team leveraged a da Vinci Surgical System for this study. It’s a robotic system that’s typically remote controlled by a surgeon with arms that manipulate instruments for tasks like dissection, suction, and cutting and sealing vessels. Systems like these give surgeons much greater control, precision, and a closer look at patients on the operating table. The latest version is estimated to cost over US$2 million, and that doesn’t include accessories, sterilizing equipment, or training.

Magnetic resonance imaging (MRI) is a fundamental tool in modern medicine, offering detailed views of internal organs and tissues. These large, tube-shaped MRI machines, commonly seen in hospitals, utilize powerful magnets to analyze and visualize the density of water and fat molecules within the body.

In addition to these molecules, other substances like metabolites can also be mapped, but their concentrations are often too low to produce clear images. To overcome this limitation, a technique known as hyperpolarization is employed to enhance the magnetic resonance signal of these substances, making them more visible during MRI scans.

Hyperpolarization involves preparing a substance outside the body in a state where its magnetization—key to creating MRI images—is near its maximum. This process can boost the signal by thousands of times compared to its natural state. Once hyperpolarized, the substance is injected into the patient and transported to the target organ or tissue. However, before this can happen, it is crucial to confirm that the substance is adequately hyperpolarized through rigorous quality control processes.

Substance use disorders are a group of conditions involving the recurrent use of substances, like drugs or alcohol, despite harmful consequences to physical, mental, or social health. These disorders are characterized by an inability to control usage, intense cravings, and continued use despite negative impacts on relationships, work, or health.

While it is well-known that substance use disorders have negative consequences for the individual, research has recently begun to focus on the effects of these disorders on others, known as the “harm to others” framework. A key area of these studies is the impact on children growing up with parents affected by substance use disorders. These children have been found to have lower academic achievement than their peers whose parents do not have such disorders, as well as an increased risk of various mental health and developmental issues.

Study author Hélio Manhica and his colleagues aimed to explore the mental health risks for children of parents with substance use disorders in greater detail. They also sought to determine whether these risks differ between males and females and if certain periods in childhood or adolescence are particularly critical in relation to exposure to parental substance use disorder (i.e., periods that influence the overall risk of developing psychiatric disorders).

Summary: Researchers found that exercise promotes neuron growth through both biochemical signals (myokines) and physical stretching. Muscle cells, when contracted, release myokines that boost neuron growth and maturity. Furthermore, neurons that were “exercised” through mechanical movement grew just as much as those exposed to myokines.

These findings reveal the dual role of exercise in stimulating nerves, offering hope for developing therapies targeting nerve repair and neurodegenerative diseases. This research opens new avenues in treating nerve damage through “exercise as medicine.”

Groundbreaking research presented at UEG Week 2024 reveals a promising new treatment strategy for type 2 diabetes (T2D) that could significantly reduce or even eliminate the need for insulin therapy.

This innovative approach, which combines a novel procedure known as ReCET (Re-Cellularization via Electroporation Therapy) with semaglutide, resulted in the elimination of insulin therapy for 86% of patients.

Globally, T2D affects 422 million people, with obesity recognized as a significant risk factor. While insulin therapy is commonly used to manage blood sugar levels in T2D patients, it can result in side effects such as weight gain and further complicate diabetes management. A need therefore exists for alternative treatment strategies.

Principal investigator Eric Pierce pointed out that the trial shows that gene therapy for hereditary vision loss is a worthy pursuit for future research. He believes the early research is promising.

“It’s a big deal to hear how thrilled they were to finally be able to see food on their plates,” said Pierce. “These were individuals who couldn’t read a single line on an eye chart. They had no treatment options, which is an unfortunate reality for most people with inherited retinal disorders.”

The goal is to inject CRISPR so that it reaches the retina to restore the ability to produce genes and proteins.

Microbial systems have been synthetically engineered to deploy therapeutic payloads in vivo.


To enable effective cancer vaccination, we developed an engineered bacterial system in probiotic Escherichia coli Nissle 1917 (EcN) to enhance expression, delivery and immune-targeting of arrays of tumour exonic mutation-derived epitopes highly expressed by tumour cells and predicted to bind major histocompatibility complex (MHC) class I and II (Fig. 1a). This system incorporates several key design elements that enhance therapeutic use: optimization of synthetic neoantigen construct form with removal of cryptic plasmids and deletion of Lon and OmpT proteases to increase neoantigen accumulation, increased susceptibility to phagocytosis for enhanced uptake by antigen-presenting cells (APCs) and presentation of MHC class II-restricted antigens, expression of listeriolysin O (LLO) to induce cytosolic entry for presentation of recombinant encoded neoantigens by MHC class I molecules and T helper 1 cell (TH1)-type immunity and improved safety for systemic administration due to reduced survival in the blood and biofilm formation.

To assemble a repertoire of neoantigens, we conducted exome and transcriptome sequencing of subcutaneous CT26 tumours. Neoantigens were predicted from highly expressed tumour-specific mutations using established methods14,15, with selection criteria inclusive of putative neoantigens across a spectrum of MHC affinity16,17. Given the importance of both MHC class I and MHC class II binding epitopes in antitumour immunity15,18,19, we integrated a measure of wild-type-to-mutant MHC affinity ratio—termed agretopicity17,20—for both epitope types derived from a given mutation, to help estimate the ability of adaptive immunity to recognize a neoantigen. Predicted neoantigens were selected from the set of tumour-specific mutations satisfying all criteria, notably encompassing numerous recovered, previously validated CT26 neoantigens15 (Extended Data Fig. 1a).

We then sought to create a microbial system that could accommodate the production and delivery of diverse sets of neoantigens to lymphoid tissue and the tumour microenvironment (TME). For the purpose of assessing neoantigen production capacity, a prototype gene encoding a synthetic neoantigen construct (NeoAgp) was created by concatenating long peptides encompassing linked CD4+ and CD8+ T cell mutant epitopes—previously shown as an optimal form for stimulating cellular immunity21—derived from CT26 neoantigens (Extended Data Fig. 1b and Extended Data Table 1). The construct was cloned into a stabilized plasmid22 under constitutive expression and transformed into EcN; however, both immunoblot and enzyme-linked immunosorbent assay (ELISA) assessment showed low production of the prototype construct by EcN across several tested promoters (Extended Data Fig. 1c).