Toggle light / dark theme

Why Don’t Machine Learning Models Extrapolate?

Introduction One thing newcomers to machine learning (ML) and many experienced practitioners often don’t realize is that ML doesn’t extrapolate. After training an ML model on compounds with µM potency, people frequently ask why none of the molecules they designed were predicted to have nM potency. If you’re new to drug discovery, 1nM = 0.001µM. A lower potency value is usually better. It’s important to remember that a model can only predict values within the range of the training set. If we’ve trained a model on compounds with IC50s between 5 and 100 µM, the model won’t be able to predict an IC50 of 0.1 µM. I’d like to illustrate this with a simple example. As always, all the code that accompanies this post is available on GitHub.

24 Incredible Scientific Discoveries Made in 2024

2024, for all of its challenges, has seen a remarkable amount of scientific discoveries by Israeli researchers across various disciplines.

From novel approaches to treating cancer to unraveling the intricacies of the human gut biome, these findings not only expand our understanding of the world but also pave the way for groundbreaking advancements in the future.

Let’s delve into 24 of the most fascinating discoveries made by Israeli scientists in 2024.


Take a look at these groundbreaking discoveries by Israeli researchers that are shaping our understanding of the world and its complexities.

AI tool uses face photos to estimate biological age and predict cancer outcomes

Eyes may be the window to the soul, but a person’s biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm called “FaceAge” that uses a photo of a person’s face to predict biological age and survival outcomes for patients with cancer.

They found that patients with , on average, had a higher FaceAge than those without and appeared about five years older than their .

Older FaceAge predictions were associated with worse overall across multiple cancer types. They also found that FaceAge outperformed clinicians in predicting short-term life expectancies of patients receiving palliative radiotherapy.

Biodegradable microplastics in mice gut trigger metabolic reprogramming, shedding light on safety concerns

Microplastic pollution is a severe ecological and environmental issue and is also one of the important risk factors affecting human health. Polylactic acid (PLA), a medical biodegradable material approved by the FDA, is an important material to replace petroleum-based plastics.

Although PLA has achieved large-scale application in , its brittle characteristics make it more likely to generate microplastic particles. These particles can efficiently invade the gut through the food chain and trigger unknown biotransformation processes at the microbiota–host interface. Therefore, elucidating precisely the transformation map of PLA microplastics within the living body is crucial for assessing their safety.

In a study published in the Proceedings of the National Academy of Sciences, a research team led by Prof. Chen Chunying from the National Center for Nanoscience and Technology (NCNST) of the Chinese Academy of Sciences has revealed the complete biological fate of PLA microplastics (PLA-MPs) in the gut of mice, particularly focusing on their microbial fermentation into endogenous metabolites and their involvement in the .

DNA-like molecule may survive Venus-like cloud conditions

Punishing conditions in the clouds of Venus could be home to a DNA-like molecule capable of forming genes in life very different to that on Earth, according to a new study.

Long thought to be hostile to complex organic chemistry because of the absence of water, the clouds of Earth’s sister planet are made of droplets of , chlorine, iron, and other substances.

But research led by Wrocław University of Science and Technology shows how peptide nucleic acid (PNA)—a structural cousin of DNA—can survive under lab conditions made to mimic conditions that can occur in Venus’ perpetual clouds.

Connection between autism spectrum disorder and myotonic dystrophy

A recent discovery of a molecular connection between autism and myotonic dystrophy, a type of neuromuscular disease, may provide a breakthrough on how clinicians approach autism spectrum disorder.

The new study by an interdisciplinary team of biomedical scientists, published in Nature Neuroscience, used myotonic dystrophy as a tool or model to learn more about autism – effectively using one disorder to better understand the other.

“We identified a new pathway that can lead to autism,” said the research lead. “We found that a genetic mutation in a certain gene can disrupt the expression of multiple autism-related genes during brain development, causing autism.”

BabyBot: Soft robotic infant mimics feeding behaviors from birth to 6 months old

A combined team of roboticists from CREATE Lab, EPFL and Nestlé Research Lausanne, both in Switzerland, has developed a soft robot that was designed to mimic human infant motor development and the way infants feed.

In their paper published in the journal npj Robotics, the group describes how they used a variety of techniques to give their robot the ability to simulate the way human infants , from birth until approximately six months old.

Prior research has shown that it is difficult to develop invasive medical procedures for infants and babies due to the lack of usable test subjects. Methods currently in use, such as simulations, observational instruments and imaging tend to fall short due to their differences compared to real human infants. To overcome such problems, the team in Switzerland has designed, built, and tested a soft robotic infant that can be used for such purposes.

In vivo 3D printing using sound holds promise for precise drug delivery, wound healing and more

Imagine that doctors could precisely print miniature capsules capable of delivering cells needed for tissue repair exactly where they are needed inside a beating heart.

A team of scientists led by Caltech has taken a significant step toward that ultimate goal, having developed a method for 3D-printing polymers at specific locations deep within living animals. The technique relies on sound for localization and has already been used to print capsules for selective drug delivery as well as glue-like polymers to seal internal wounds.

Previously, scientists have used to trigger polymerization, the linking of the basic units, or monomers, of polymers within living animals.