Toggle light / dark theme

Researchers use the device to study heart attacks and hope to test new heart medications.

Researchers have developed a device that can mimic aspects of a heart attack with hopes of using the device to test and develop novel heart medications. The research team, from the University of Southern California Alfred E. Mann Department of Biomedical Engineering in the U.S., created the tool, which they call a “heart attack on a chip.”

The study was published in the journal Science Advances.


Understanding a heart attack through simulation

The device can simulate key components of a heart attack, also called a myocardial infarction, in a practical, structured system. Researchers hope it will one day serve as a place to test for new heart drugs.

“This enables us to more clearly understand how the heart is changing after a heart attack. From there, we and others can develop and test drugs that will be most effective for limiting the further degradation of heart tissue that can occur after a heart attack,” said Megan McCain, an associate professor of biomedical engineering and stem cell biology and regenerative medicine. She also developed the device with postdoctoral researcher Megan Rexius-Hall.

I wrote a foreword for this awesome Sci-Fi book here: https://amzn.to/3aGrg0I
Get a Wonderful Person shirt: https://teespring.com/stores/whatdamath.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about new studies that present a scientific creation of artificial life.
Papers: https://linkinghub.elsevier.com/retrieve/pii/S0092867421002932
https://robotics.sciencemag.org/content/6/52/eabf1571
Old papers: https://science.sciencemag.org/content/329/5987/52?ijkey=844…f_ipsecsha.
https://pubmed.ncbi.nlm.nih.gov/14657399/
Press release and video/images: https://www.uvm.edu/uvmnews/news/team-builds-first-living-robots.
Images:
James Pelletier (MIT Center for Bits and Atoms and Department of Physics) and Elizabeth Strychalski (National Institute of Standards and Technology))
DOUGLAS BLACKISTON, Tufts University.
Otofrog, CC BY-SA 4.0
Charles Daghlian.
Universal Studios, NBCUniversal — Dr. Macro.
www.scientificanimations.com, CC0
IDKlab, CC0

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoins to spare? Donate them here to help this channel grow!
32ygEA36irM9Dsqx2rXZmHQ9rj7ZoWDYWZ

Space Engine is available for free here: http://spaceengine.org.
Enjoy and please subscribe.

Twitter: https://twitter.com/WhatDaMath.

http://www.iBiology.org.

For millennia, humans have been harnessing #microbes to produce everything from breads, to cheeses, to alcohol. Now these tiny organisms have produced another powerful revolution — the gene editing tool CRISPR. Rodolphe Barrangou, Ph.D., was working at the food company Danisco, where he was trying to produce yogurt lines resistant to contamination. In a series of groundbreaking experiments, he helped uncover what CRISPR was, how it worked, and why it could be so transformative.

Speaker Biography:
Rodolphe Barrangou, Ph.D., studies beneficial microbes, focusing on the occurrence and diversity of lactic acid bacteria in fermented foods and as probiotics. Using functional genomics, he has focused on uncovering the genetic basis for health-promoting traits, including the ability to uptake and catabolize non-digestible carbohydrates. He spent 9 years at Danisco-DuPont, characterizing probiotics and starter cultures, and established the functional role of CRISPR-Cas as adaptive immune systems in bacteria. At NC State, he continues to study the molecular basis for their mechanism of action, as well as developing and applying CRISPR-based technologies for genotyping, building immunity and genome editing.

Producers: Sarah Goodwin, Rebecca Ellsworth.
Cinematographer: Derek Reich.
Editor: Rebecca Ellsworth\
Graphics: Chris George, Maggie Hubbard.
Assistant Camera: Gray McClamrock.
Drone aerials: Travis Jack.
Supervising Editor: Regina Sobel.
Field Producer: Meredith DeSalazar.
Interview by: Adam Bolt.
Associate Producer: Shelley Elizabeth Carter.
Executive Producers: Shannon Behrman, Sarah Goodwin, Elliot Kirschner.

Except where otherwise noted, this work is licensed under.
http://creativecommons.org/licenses/by-nc-nd/4.0/
© 2007–2022 Science Communication Lab™. All rights reserved.

#biology #research

In 1992, scientists found drugs such as cocaine, hashish, and nicotine in some Egyptian mummies. These mummies came to be known as the “cocaine mummies.”

Traces of the drugs were found in the hair and skin of the mummies. Initially, scientists thought that this was a result of contamination and that perhaps improper techniques had been used to analyze the mummy.

Tumors are three-dimensional phenomena, but so far we have been using 2D imagery to scan and study them. With the advancement of virtual reality in recent years, professor and director at Cancer Research UK Cambridge Institute Greg Hannon saw an opportunity to advance cancer research by incorporating 3D imaging and VR technology.

In 2017, his IMAXT team (Imaging and Molecular Annotation of Xenografts and Tumors) received a £20 million grant from Cancer Grand Challenges to develop VR software that could map tumours at an unprecedented level of detail. In the last few years, the project welcomed interdisciplinary and international collaborations between scientists and artists who created and tested the technology on breast cancers.

The software, developed by Suil, will be available for researchers to use worldwide for academic, non-commercial research.

Mashable is your source for the latest in tech, culture, and entertainment.

Follow us:
Check out https://mashable.com/
Facebook: https://www.facebook.com/mashable.
Twitter: https://twitter.com/mashable.
Instagram: https://www.instagram.com/mashable

CRISPR, the Nobel Prize-winning gene editing technology, is poised to have a profound impact on the fields of microbiology and medicine yet again.

A team led by CRISPR pioneer Jennifer Doudna and her longtime collaborator Jill Banfield has developed a clever tool to edit the genomes of bacteria-infecting viruses called bacteriophages using a rare form of CRISPR. The ability to easily engineer custom-designed —which has long eluded the —could help researchers control microbiomes without antibiotics or harsh chemicals, and treat dangerous drug-resistant infections. A paper describing the work was recently published in Nature Microbiology.

“Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here—discovery is literally at our fingertips.”

The Salton Sea, the body of water in Southern California’s Coachella Valley and Imperial Valley, is shrinking over time as the planet warms and exposing more lakebed and new sources of dust in the process. High levels of dust already plague the region, a situation likely to worsen as the sea continues to shrink due to climate change.

Not surprisingly, the communities surrounding the Salton Sea have high rates of childhood asthma (20–22.4%)—much higher than the California average of 14.5%.

A University of California-Riverside (UCR) mouse study, led by Dr. David Lo, a distinguished professor of biomedical sciences in the School of Medicine, has found that dust collected at sites near the Salton Sea triggered lung neutrophil in mice. Neutrophils are a type of white blood cells that help fight infection.

Biotech startup Lucy Therapeutics is developing mitochondrial-based small molecule therapies for neurological diseases and recently revealed the first two drugs to emerge from its lead programme targeting Parkinson’s. The company, which takes its name from the 3.2-million-year-old fossil of an ancestor of humankind, presented “promising preclinical data” at the Michael J Fox Foundation’s Parkinson’s Disease Therapeutics Conference in October.

The data shown by Lucy Therapeutics demonstrated that its compounds were able to reverse mitochondrial dysfunctions linked to Parkinson’s. In cellular models of the disease, the drugs boosted levels of cellular energy molecule ATP, prevented the death of neurons, and reduced levels of other hallmarks of Parkinson’s, including a-synuclein.

Longevity. Technology: Mitochondria are widely known as the ‘power generators’ within our cells, and their dysfunction has been linked to a range of age-related diseases. But the role of mitochondria extends beyond cellular energy as they also dictate many of a cell’s key functions. Lucy Therapeutics was founded on the hypothesis that diseases with rate-limiting steps involving mitochondrial dysfunction can potentially be treated by modulating key mitochondrial protein targets. To find out more, we caught up with the company’s founder and CEO, Dr Amy Ripka.

Accelerating particles to relativistic speeds typically requires particle accelerators that are many kilometers in length. Miniature particle accelerators a few tens of centimeters long or smaller also exist. These so-called laser-plasma accelerators are being tested in research facilities for future use in hospitals, where scientists hope the accelerators could generate x rays for cancer diagnostics and treatment. In these devices, particles are accelerated by short laser pulses, so scientists have only a few femtoseconds to track the particles’ evolving properties. Now Simon Bohlen of the German Electron Synchrotron (DESY) and colleagues experimentally demonstrate a technique to measure the energy evolution of an electron bunch inside a laser-plasma accelerator [1]. The team hopes that the technique could be used to improve laser-plasma accelerators and ready them to generate x rays for medical applications.

For their demonstration Bohlen and colleagues used a phenomenon called Thomson scattering, which is the scattering of photons by electrons. They split in two the laser beam used to accelerate the electrons, using one part for normal electron acceleration and the other part to create a Thomson laser—a beam of photons the accelerated electrons could scatter. They then overlapped the Thomson laser and the accelerated electrons such that the two interacted at 20 locations over a 400- m distance. The team measured the energy of the photons scattered during these interactions using an x-ray detector. From these measurements, the team reconstructed the energy evolution of the electrons over most of the accelerator length without destroying the electron beam.