Toggle light / dark theme

Elizabeth Gibney — Nature

Physicists have found hints that the asymmetry of life — the fact that most biochemical molecules are ‘left-handed’ or ‘right-handed’ — could have been caused by electrons from nuclear decay in the early days of evolution. In an experiment that took 13 years to perfect1, the researchers have found that these electrons tend to destroy certain organic molecules slightly more often than they destroy their mirror images.

Many organic molecules, including glucose and most biological amino acids, are ‘chiral’. This means that they are different than their mirror-image molecules, just like a left and a right glove are. Moreover, in such cases life tends to consistently use one of the possible versions — for example, the DNA double helix in its standard form always twists like a right-handed screw. But the reason for this preference has long remained a mystery.

Read more

Western Canada’s most futurist-oriented longevity organization, the Lifespan Society of British Columbia, has organized a first-class life extension conference, which will take place later this fall in the heart of downtown Vancouver. The Longevity and Genetics Conference 2014 offers a full-day of expert presentations, made accessible to a general audience, with keynote on the latest developments in biorejuvination by Aubrey de Grey of SENS Research Foundation. The conference will be interactive, with a panel session for audience questions, and VIP options for further interaction with speakers.

ImageofAubreydeGrey
Aubrey de Grey

Who will be there? In addition to Aubrey de Grey, there are four other speakers confirmed thus far: Dr. Angela Brooks-Wilson, Head of Cancer Genetics at the Michael Smith Genome Sciences Centre at the BC Cancer Agency, Dr. S. Jay Olshansky, Board of Directors of the American Federation of Aging Research, and co-author of The Quest for Immortality: Science at the Frontiers of Aging, Dr. Clinton Mielke, former Mayo Clinic researcher and founder of the quantified self platform “infino.me”, and lastly, one of futurism’s most experienced and dedicated radical longevity advocates, Benjamin Best, who is currently Director of Research Oversight at the Life Extension Foundation. This conference is a multi-disciplinary event, engaging several points of interest and relevance in the longevity space, from the cellular, genetic science of aging, to the latest epidemiological and even demographic research. You can also expect discussion on personalized medicine and quantified self technologies, as well as big picture, sociological and philosophical, longevity-specific topics.

All around, the 2014 Longevity and Genetics conference, set to take place Saturday November 15, has a lot to offer, as does the host city of Vancouver. A recent study has indicated that a majority of Canadians, 59%, are in favor of life extension technology, with 47% expecting that science and technology will enable living until 120 by 2050. The Lifespan Society of British Columbia is keeping that momentum and enthusiasm alive and growing, and I’m glad they have organized such a high-calliber event. Tickets are currently still available. Learn more about the event and purchase tickets here.

ImageofVancouver
Vancouver B.C.

What follows is my position piece for London’s FutureFest 2013, the website for which no longer exists.

Medicine is a very ancient practice. In fact, it is so ancient that it may have become obsolete. Medicine aims to restore the mind and body to their natural state relative to an individual’s stage in the life cycle. The idea has been to live as well as possible but also die well when the time came. The sense of what is ‘natural’ was tied to statistically normal ways of living in particular cultures. Past conceptions of health dictated future medical practice. In this respect, medical practitioners may have been wise but they certainly were not progressive.

However, this began to change in the mid-19th century when the great medical experimenter, Claude Bernard, began to champion the idea that medicine should be about the indefinite delaying, if not outright overcoming, of death. Bernard saw organisms as perpetual motion machines in an endless struggle to bring order to an environment that always threatens to consume them. That ‘order’ consists in sustaining the conditions needed to maintain an organism’s indefinite existence. Toward this end, Bernard enthusiastically used animals as living laboratories for testing his various hypotheses.

Historians identify Bernard’s sensibility with the advent of ‘modern medicine’, an increasingly high-tech and aspirational enterprise, dedicated to extending the full panoply of human capacities indefinitely. On this view, scientific training trumps practitioner experience, radically invasive and reconstructive procedures become the norm, and death on a physician’s watch is taken to be the ultimate failure. Humanity 2.0 takes this way of thinking to the next level, which involves the abolition of medicine itself. But what exactly would that mean – and what would replace it?

The short answer is bioengineering, the leading edge of which is ‘synthetic biology’. The molecular revolution in the life sciences, which began in earnest with the discovery of DNA’s function in 1953, came about when scientists trained in physics and chemistry entered biology. What is sometimes called ‘genomic medicine’ now promises to bring an engineer’s eye to improving the human condition without presuming any limits to what might count as optimal performance. In that case, ‘standards’ do not refer to some natural norm of health, but to features of an organism’s design that enable its parts to be ‘interoperable’ in service of its life processes.

In this brave new ‘post-medical’ world, there is always room for improvement and, in that sense, everyone may be seen as ‘underperforming’ if not outright disabled. The prospect suggests a series of questions for both the individual and society: (1) Which dimensions of the human condition are worth extending – and how far should we go? (2) Can we afford to allow everyone a free choice in the matter, given the likely skew of the risky decisions that people might take? (3) How shall these improvements be implemented? While bioengineering is popularly associated with nano-interventions inside the body, of course similarly targeted interventions can be made outside the body, or indeed many bodies, to produce ‘smart habitats’ that channel and reinforce desirable emergent traits and behaviours that may even leave long-term genetic traces.

However these questions are answered, it is clear that people will be encouraged, if not legally required, to learn more about how their minds and bodies work. At the same time, there will no longer be any pressure to place one’s fate in the hands of a physician, who instead will function as a paid consultant on a need-to-know and take-it-or-leave-it basis. People will take greater responsibility for the regular maintenance and upgrading of their minds and bodies – and society will learn to tolerate the diversity of human conditions that will result from this newfound sense of autonomy.

Among transhumanists, Nick Bostrom is well-known for promoting the idea of ‘existential risks’, potential harms which, were they come to pass, would annihilate the human condition altogether. Their probability may be relatively small, but the expected magnitude of their effects are so great, so Bostrom claims, that it is rational to devote some significant resources to safeguarding against them. (Indeed, there are now institutes for the study of existential risks on both sides of the Atlantic.) Moreover, because existential risks are intimately tied to the advancement of science and technology, their probability is likely to grow in the coming years.

Contrary to expectations, Bostrom is much less concerned with ecological suicide from humanity’s excessive carbon emissions than with the emergence of a superior brand of artificial intelligence – a ‘superintelligence’. This creature would be a human artefact, or at least descended from one. However, its self-programming capacity would have run amok in positive feedback, resulting in a maniacal, even self-destructive mission to rearrange the world in the image of its objectives. Such a superintelligence may appear to be quite ruthless in its dealings with humans, but that would only reflect the obstacles that we place, perhaps unwittingly, in the way of the realization of its objectives. Thus, this being would not conform to the science fiction stereotype of robots deliberately revolting against creators who are now seen as their inferiors.

I must confess that I find this conceptualisation of ‘existential risk’ rather un-transhumanist in spirit. Bostrom treats risk as a threat rather than as an opportunity. His risk horizon is precautionary rather than proactionary: He focuses on preventing the worst consequences rather than considering the prospects that are opened up by whatever radical changes might be inflicted by the superintelligence. This may be because in Bostrom’s key thought experiment, the superintelligence turns out to be the ultimate paper-clip collecting machine that ends up subsuming the entire planet to its task, destroying humanity along the way, almost as an afterthought.

But is this really a good starting point for thinking about existential risk? Much more likely than total human annihilation is that a substantial portion of humanity – but not everyone – is eliminated. (Certainly this captures the worst case scenarios surrounding climate change.) The Cold War remains the gold standard for this line of thought. In the US, the RAND Corporation’s chief analyst, Herman Kahn — the model for Stanley Kubrick’s Dr Strangelove – routinely, if not casually, tossed off scenarios of how, say, a US-USSR nuclear confrontation would serve to increase the tolerance for human biological diversity, due to the resulting proliferation of genetic mutations. Put in more general terms, a severe social disruption provides a unique opportunity for pursuing ideals that might otherwise be thwarted by a ‘business as usual’ policy orientation.

Here it is worth recalling that the Cold War succeeded on its own terms: None of the worst case scenarios were ever realized, even though many people were mentally prepared to make the most of the projected adversities. This is one way to think about how the internet itself arose, courtesy the US Defense Department’s interest in maintaining scientific communications in the face of attack. In other words, rather than trying to prevent every possible catastrophe, the way to deal with ‘unknown unknowns’ is to imagine that some of them have already come to pass and redesign the world accordingly so that you can carry on regardless. Thus, Herman Kahn’s projection of a thermonuclear future provided grounds in the 1960s for the promotion of, say, racially mixed marriages, disability-friendly environments, and the ‘do more with less’ mentality that came to characterize the ecology movement.

Kahn was a true proactionary thinker. For him, the threat of global nuclear war raised Joseph Schumpeter’s idea of ‘creative destruction’ to a higher plane, inspiring social innovations that would be otherwise difficult to achieve by conventional politics. Historians have long noted that modern warfare has promoted spikes in innovation that in times of peace are then subject to diffusion, as the relevant industries redeploy for civilian purposes. We might think of this tendency, in mechanical terms, as system ‘overdesign’ (i.e. preparing for the worst but benefitting even if the worst doesn’t happen) or, more organically, as a vaccine that converts a potential liability into an actual benefit.

In either case, existential risk is regarded in broadly positive terms, specifically as an unprecedented opportunity to extend the range of human capability, even under radically changed circumstances. This sense of ‘antifragility’, as the great ‘black swan’ detector Nicholas Taleb would put it, is the hallmark of our ‘risk intelligence’, the phrase that the British philosopher Dylan Evans has coined for a demonstrated capacity that people have to make step change improvements in their lives in the face of radical uncertainty. From this standpoint, Bostrom’s superintelligence concept severely underestimates the adaptive capacity of human intelligence.

Perhaps the best way to see just how much Bostrom shortchanges humanity is to note that his crucial thought experiment requires a strong ontological distinction between humans and superintelligent artefacts. Where are the cyborgs in this doomsday scenario? Reading Bostrom reminds me that science fiction did indeed make progress in the twentieth century, from the world of Karl Čapek’s Rossum’s Universal Robots in 1920 to the much subtler blending of human and computer futures in the works of William Gibson and others in more recent times.

Bostrom’s superintelligence scenario began to be handled in more sophisticated fashion after the end of the First World War, popularly under the guise of ‘runaway technology’, a topic that received its canonical formulation in Langdon Winner’s 1977 Autonomous Technology: Technics out of Control, a classic in the field of science and technology of studies. Back then the main problem with superintelligent machines was that they would ‘dehumanize’ us, less because they might dominate us but more because we might become like them – perhaps because we feel that we have invested our best qualities in them, very much like Ludwig Feuerbach’s aetiology of the Judaeo-Christian God. Marxists gave the term ‘alienation’ a popular spin to capture this sentiment in the 1960s.

Nowadays, of course, matters have been complicated by the prospect of human and machine identities merging together. This goes beyond simply implanting silicon chips in one’s brain. Rather, it involves the complex migration and enhancement of human selves in cyberspace. (Sherry Turkle has been the premier ethnographer of this process in children.) That such developments are even possible points to a prospect that Bostrom refuses to consider, namely, that to be ‘human’ is to be only contingently located in the body of Homo sapiens. The name of our species – Homo sapiens – already gives away the game, because our distinguishing feature (so claimed Linnaeus) had nothing to do with our physical morphology but with the character of our minds. And might not such a ‘sapient’ mind better exist somewhere other than in the upright ape from which we have descended?

The prospects for transhumanism hang on the answer to this question. Aubrey de Grey’s indefinite life extension project is about Homo sapiens in its normal biological form. In contrast, Ray Kurzweil’s ‘singularity’ talk of uploading our consciousness into indefinitely powerful computers suggests a complete abandonment of the ordinary human body. The lesson taught by Langdon Winner’s historical account is that our primary existential risk does not come from alien annihilation but from what social psychologists call ‘adaptive preference formation’. In other words, we come to want the sort of world that we think is most likely, simply because that offers us the greatest sense of security. Thus, the history of technology is full of cases in which humans have radically changed their lives to adjust to an innovation whose benefits they reckon outweigh the costs, even when both remain fundamentally incalculable. Success in the face such ‘existential risk’ is then largely a matter of whether people – perhaps of the following generation – have made the value shifts necessary to see the changes as positive overall. But of course, it does not follow that those who fail to survive the transition or have acquired their values before this transition would draw a similar conclusion.

If the controversy over genetically modified organisms (GMOs) tells us something indisputable, it is this: GMO food products from corporations like Monsanto are suspected to endanger health. On the other hand, an individual’s right to genetically modify and even synthesize entire organisms as part of his dietary or medical regimen could someday be a human right.
The suspicion that agri-giant companies do harm by designing crops is legitimate, even if evidence of harmful GMOs is scant to absent. Based on their own priorities and actions, we should have no doubt that self-interested corporations disregard the rights and wellbeing of local producers and consumers. This makes agri-giants producing GMOs harmful and untrustworthy, regardless of whether individual GMO products are actually harmful.
Corporate interference in government of the sort opposed by the Occupy Movement is also connected with the GMO controversy, as the US government is accused of going to great lengths to protect “stakeholders” like Monsanto via the law. This makes the GMO controversy more of a business and political issue rather than a scientific one, as I argued in an essay published at the Institute for Ethics and Emerging Technologies (IEET). Attacks on science and scientists themselves over the GMO controversy are not justified, as the problem lies solely with a tiny handful of businessmen and corrupt politicians.
An emerging area that threatens to become as controversial as GMOs, if the American corporate stranglehold on innovation is allowed to shape its future, is synthetic biology. In his 2014 book, Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life, top synthetic biologist J. Craig Venter offers powerful words supporting a future shaped by ubiquitous synthetic biology in our lives:

“I can imagine designing simple animal forms that provide novel sources of nutrients and pharmaceuticals, customizing human stem cells to regenerate a damaged, old, or sick body. There will also be new ways to enhance the human body as well, such as boosting intelligence, adapting it to new environments such as radiation levels encountered in space, rejuvenating worn-out muscles, and so on”

In his own words, Venter’s vision is no less than “a new phase of evolution” for humanity. It offers what Venter calls the “real prize”: a family of designer bacteria “tailored to deal with pollution or to absorb excess carbon dioxide or even meet future fuel needs”. Greater than this, the existing tools of synthetic biology are transhumanist in nature because they create limitless means for humans to enhance themselves to deal with harsher environments and extend their lifespans.
While there should be little public harm in the eventual ubiquity of the technologies and information required to construct synthetic life, the problems of corporate oligopoly and political lobbying are threatening synthetic biology’s future as much as they threaten other facets of human progress. The best chance for an outcome that will be maximally beneficial for the world relies on synthetic biology taking a radically different direction to GM. That alternative direction, of course, is an open source future for synthetic biology, as called for by Canadian futurist Andrew Hessel and others.
Calling himself a “catalyst for open-source synthetic biology”, Hessel is one of the growing number of experts who reject biotechnology’s excessive use of patents. Nature notes that his Pink Army Cooperative venture relies instead on “freely available software and biological parts that could be combined in innovative ways to create individualized cancer treatments — without the need for massive upfront investments or a thicket of protective patents”.
While offering some support to the necessity of patents, J. Craig Venter more importantly praises the annual International Genetically Engineered Machine (iGEM) competition in his book as a means of encouraging innovation. He specifically names the Registry of Standard Biological Parts, an open source library from which to obtain BioBricks, and describes this as instrumental for synthetic biology innovation. Likened to bricks of Lego that can be snapped together with ease by the builder, BioBricks are prepared standard pieces of genetic code, with which living cells can be newly equipped and operated as microscopic chemical factories. This has enabled students and small companies to reprogram life itself, taking part in new discoveries and innovations that would have otherwise been impossible without the direct supervision of the world’s best-trained teams of biologists.
There is a similar movement towards popular synthetic biology by the name of biohacking, promoted by such experts as Ellen Jorgensen. This compellingly matches the calls for greater autonomy for individuals and small companies in medicine and human enhancement. Unfortunately, despite their potential to greatly empower consumers and farmers, such developments have not yet found resonance with anti-GMO campaigners, whose outright rejection of biotechnology has been described as anti-science and “bio-luddite” by techno-progressives. It is for this reason that emphasizing the excellent potential of biotechnology for feeding and fuelling a world plagued by dwindling resources is important, and a focus on the ills of big business rather than imagined spectres emerging from science itself is vital.
The concerns of anti-GMO activists would be addressed better by offering support to an alternative in the form of “do-it-yourself” biotechnology, rather than rejecting sciences and industries that are already destined to be a fundamental part of humanity’s future. What needs to be made is a case for popular technology, in hope that we can reject the portrayal of all advanced technology as an ally of powerful states and corporations and instead unlock its future as a means of liberation from global exploitation and scarcity.
While there are strong arguments that current leading biotechnology companies feel more secure and perform better when they retain rigidly enforced intellectual property rights, Andrew Hessel rightly points out that the open source future is less about economic facts and figures than about culture. The truth is that there is a massive cultural transition taking place. We can see a growing hostility to patents, and an increasing popular enthusiasm for open source innovation, most promisingly among today’s internet-borne youth.
In describing a cultural transition, Hessel is acknowledging the importance of the emerging body of transnational youth whose only ideology is the claim that information wants to be free, and we find the same culture reflected in the values of organizations like WikiLeaks. Affecting every facet of science and technology, the elite of today’s youth are crying out for a more open, democratic, transparent and consumer-led future at every level.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at h+ Magazine on 21 August 2014

. @IEET. @HJBentham. @ClubOfINFO. #nature. #philosophy. #ebook.

There is often imagined to be a struggle between humans and nature. How does this struggle originate, and what is its resolution? Such a question is central to some religious traditions, and has much room to be explored in literature.
Nature is used to describe everything that lies outside of human agency. Disasters and disease often fall under this description, although there is usually some element of human blame in such problems. Some people try to live or eat according to preferences that they call “natural”. In my view, this is a fallacy. When we use the word natural with its only workable definition, to represent something distinct from human agency, it means that anything resulting from human agency is unnatural and so it cannot be natural (even if it imitates nature). When it applies to human choices, natural is only an arbitrary label used by people to refer to anything they approve of.
Why would humans battle against nature? Perhaps suffering can be described as the most imposing and constantly surfacing part of nature in our lives, because it is ultimately caused by the laws of biology rather than human wills. We humans have vulnerable bodies and we rely on vulnerable, easily destroyed brains to exist, although it is very apparent that we would prefer not to be exposed in this way. Because this is so, the struggle to overcome humanity’s physical and medical vulnerabilities can be depicted as a battle against natureour nature.
The assertion that seeking invulnerability against suffering is an escape from cruel inevitabilities biology is certainly reflected in some philosophers, such as Friedrich Nietzsche. Despite seeing the transformation of humanity into a higher creature as a noble task, Nietzsche saw this as necessarily involving suffering. As for the desire to end suffering, he deplored this as a product of weakness and the inability to accept the forces outside human control.
Nietzsche addressed the way in which religious traditions give moral assurances against suffering. Religions offer promises of justice that run contrary to the natural order in which the strong are favored over the weak. The Christian doctrines of the fall of man and eternal Heaven are alike in their view that the world we know is flawed and polluted, and humans are instead meant to endure in paradise. Such myths have been easy for people to buy into, because it is often easier to tolerate suffering in the world and move on if one believes in a supernatural alternativea cosmic safety net for the weak and the deadafter it.
The other manifestation of our weak human refusal to accept suffering, but which actually works, is the desire to use science and technology to thwart suffering. Once we remove the supernatural, the only remaining assurances against suffering can necessarily come from the modernity of technology. In this sense, the idea of a technological singularity, after which the very best technology permitted by the laws of physics will get within reach, represents the only “true” paradise that could ever be inherited.
But what if a paradise, an all-encompassing solution to suffering, is impossible? A universe with high suffering is inherently more likely than a universe without it, because the “anthropic principle” does not contain any guarantees against mortality and suffering. The anthropic principle says human life exists only because this is a requisite for us to notice our own existence. Therefore, the anthropic principle leads to a universe that merely tolerates conscious life for a limited time, rather than enriches it or sustains it. Contrary to religious claims, the universe in which we reside is not “designed” for us to inhabit, and we know this because it is mostly uninhabitable. The vacuum of space cannot be inhabited, and most locations in the universe have the wrong temperature or lack the elements needed for life to exist. What is conspicuous is that the universal constants allow us to exist, not in any kind of ideal state but just enough.
One can relate “extropy” (Kevin Kelly’s usage of the term) to the anthropic principle. Where the anthropic principle explains the human-friendly properties of the universe as existing simply because a human observer exists, extropy the guarantee of something even more complex and intelligent in the future. More than simply tolerating human life, then, a universe where humans exist includes the inevitability that human intelligence will evolve into or produce something far more enduring and glorious. After all, we are no pinnacle, and we are still witnessing an ongoing explosion of intelligence through such creations as the internet and the race to develop powerful AI.
Take a look at history and current cosmology, and we will see that extropy looks very valid. Humans have undeniably been improving their existence, and this is arguably due to the universe being filled with resources that are very friendly to our needs. There are seemingly infinite resources and tools in the universe for humans to exploit to improve their civilization, and the anthropic principle alone did not necessary contain any guarantee that such useful “equipment” would exist. Conceivably, there could be worlds where intelligent life exists but there can be no fire. There might also have been no sufficient quantities of ores or effective tools to build an advanced civilization. Certainly, humans have a lot more at their fingertips than the minimal equipment promised to them by the anthropic principle. Although there is not necessarily a God to thank for it, there is a lot to be thankful for.
What if there was a world where conditions were less favorable? Perhaps, if humans were too vulnerable, there would be less potential to develop civilization, and instead all thought would be dedicated to staying alive. A work of fiction I have dedicated to exploring this theme, The Traveller and Pandemonium, takes place in a more hostile universe than ours (as permitted in the “many-worlds hypothesis”), where a traveler is not convinced by the idea that humanity could have arisen in such unfavorable conditions. Determining that humanity belongs in another world, he searches vainly for the solution.
The traveler keeps his quest secret, aware that most people will condemn him as a religious nut searching for Heaven if he talks about it, but there is actually a rational basis for his view that humans belong elsewhere. The world in which he resides is genuinely toxic and inhospitable to humanity, humans are vulnerable to every creature in the world around them, and they are rapidly going extinct. It looks like a human colonization gone awry on a hostile alien world, although no-one knows how it got that way.
The two strategies against suffering in the world can be described as surgical and spiritual. Those who advocate “spiritual” solutions are only offering window-dressing to humanity while they greedily seek power. Those who advocate “surgical” solutions might not seem beautiful or perfect in what they promise, but they are the only ones promising something real, offering something tangible that could really fight away the uglier characteristics of the universe and save what can be saved.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at the Institute for Ethics and Emerging Technologies on 17 July 2014

Written By: — Singularity Hub
http://cdn.singularityhub.com/wp-content/uploads/2014/07/universe-comes-to-know-itself-1.jpg
In his latest video, host of National Geographic’s Brain Games and techno-poet, Jason Silva, explores the universe’s tendency to self-organize. Biology, he says, seems to have agency and directionality toward greater complexity, and humans are the peak.

“It’s like human beings seem to be the cutting edge,” Silva says. “The evolutionary pinnacle of self-awareness becoming aware of its becoming.”

Read more

— Singularity Hub
AI, neuroscience, technology,
It turns out that an apple a day — or at least an apple spinach salad — does keep the doctor away. But it’s not true that when brain cells die we can’t make more. When and how remain active questions, however, so there’s no free pass to collectively disregard our mothers’ safety tips just yet.

Researchers at Duke University have shed some light on the subject with findings that suggest that down the line doctors may be able spur the brain to repair itself.

Read More

Oil and Gas Tankers (maritime vessels) that has continuously benefited from Mr. Andres Agostini’s White Swan Transformative and Integrative Risk Management. The White Swan Idea is at https://lifeboat.com/blog/2014/04/white-swan

Through five and half years, the White Swan Book Author Andres Agostini concurrently managed the risks of ten (10) oil and gas tankers (maritime vessels). There is a sample of five (5) vessels here.

038

039

040

041

042

The White Swan Idea is at https://lifeboat.com/blog/2014/04/white-swan