Toggle light / dark theme

DNA damage by radiation is a concern for space travelers. New experiments on the ISS show that CRISPR gene editing tools can function in space and can potentially be used to mitigate these effects.

Image credit: Norbert Kowalczyk Unsplash

Studying DNA repair is key to future space exploration, which could expose humans to risk of DNA damage caused by radiation. Conditions in space also could affect the way the body repairs such damage, potentially compounding that risk.

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers.

Maya Ajmera, President & CEO of Society for Science & the Public and Publisher of Science News, chatted with Ray Kurzweil, an alumnus of the Science Talent Search and a renowned inventor and futurist. Kurzweil also has written five best-selling books, is Cofounder and Chancellor of Singularity University and is a Director of Engineering at Google. We are thrilled to share an edited summary of their conversation.

You are an alum of the1965Science Talent Search. How did the competition impact your life, and are there any particular moments that still stand out for you?

The Westinghouse Science Talent Search was the first time I was recognized nationally. President Johnson had just been elected and we met him at the White House. He told us his goal was that our generation would never see the horrors of war.

One of the most difficult aspects of gene therapy might be ensuring that it gets into the right cells safely so it can have a therapeutic effect. Researchers have now created a new way to deliver various types of RNA cargo to cells, which utilizes one of the human body’s natural proteins to create particles that can bind to RNA. This approach, called SEND, may help reduce any immune response that would be mounted against a gene therapy. The work has been reported in Science.

Current delivery systems are not efficient, may integrate their cargo improperly, and can cause serious immune reactions. “The biomedical community has been developing powerful molecular therapeutics, but delivering them to cells in a precise and efficient way is challenging,” said senior study author Feng Zhang, Ph.D., a core institute member at the Broad Institute, among many other appointments. “SEND has the potential to overcome these challenges.”

Batteries are widely used in everyday applications like powering electric vehicles, electronic gadgets and are promising candidates for sustainable energy storage. However, as you’ve likely noticed with daily charging of batteries, their functionality drops off over time. Eventually, we need to replace these batteries, which is not only expensive but also depletes the rare earth elements used in making them.

A key factor in life reduction is the degradation of a battery’s structural integrity. To discourage structural degradation, a team of researchers from USC Viterbi School of Engineering are hoping to introduce “stretch” into battery materials so they can be cycled repeatedly without structural fatigue. This research was led by Ananya Renuka-Balakrishna, WiSE Gabilan Assistant Professor of Aerospace and Mechanical Engineering, and USC Viterbi Ph.D candidate, Delin Zhang, as well as Brown University researchers from Professor Brian Sheldon’s group. Their work was published in the Journal of Mechanics and Physics of Solids.

A typical battery works through a repetitive cycle of inserting and extracting Li-ions from electrodes, Zhang said. This insertion and extraction expands and compresses the lattices. These volume shifts create microcracks, fractures and defects over time.

New information from a study reported in Stem Cells might result in more effective treatments for osteoarthritis and other cartilage diseases, as well as hereditary disorders affecting cartilage development. Their findings might also point to a new way to accelerate stem cell differentiation for bioengineering cartilage, the researchers say.

What we’ll soon see is the ultimate self-directed evolution fueled forward by gene editing, genetic engineering, reproduction assisted technology, neuro-engineering, mind uploading and creation of artificial life. Our success as a technological species essentially created what might be called our species-specific “success formula.” We devised tools and instruments, created new methodologies and processes, and readjusted ecological niches to suit our needs. And our technology shaped us back by shaping our minds. In a very real sense, we have co-evolved with our technology. As an animal species among many other species competing for survival, this was our unique passage to success.

#TECHNOCULTURE : #TheRiseofMan #CyberneticTheoryofMind


Technology has always been a “double-edged sword” since fire, which has kept us warm and cooked our food but also burned down our huts. Today, we surely enjoy the fruits of modern civilization when we fly halfway around the globe on an airbus, when we extend our mental functionality with a whole array of Internet-enabled devices, when our cities and dwellings become icons of technological sophistication.

Craig Montell is a professor at the University of California, Santa Barbara, who helped lead the research. He said in a statement that by removing the two eye receptors, the team was able to “eliminate CO2-induced target recognition without causing blindness.”


Female Aedes aegypti search out blood meals in humans to develop eggs. They use several different senses to find those meals. One of the main identifying tools is the smell of carbon dioxide (CO2). When a human breathes out CO2, the mosquitoes become more active and begin looking for targets to bite.

The research team said this search generally begins with the mosquito flying toward the direction of the released CO2. When seeking out targets, the insects search for dark objects. Once the mosquitoes are within close range, they can also sense heat from skin and additional skin smells to help guide them to a human.

The researchers used the CRSPR/Cas-9 gene editing method to remove two out of five light-sensing receptors in the mosquitoes’ eyes. They say taking away these receptors blocked the ability of the female Aedes aegypti to recognize dark targets.

I am pleased to announce that my lead-author review paper has been published in ACS Nano! If you are interested in learning about the convergence of synthetic biology and adenoviral gene therapy, I encourage you to check out my paper.

If you cannot access the full text, I have also posted a local copy at the following link: https://logancollinsblog.files.wordpress.com/2021/08/synthet…s-2021.pdf.

#ACS #ACSNano #SyntheticBiology #GeneTherapy #Biology #Biotech #Science #Biotechnology #Nanotechnology #Adenovirus #Engineering #Virology


Synthetic biology centers on the design and modular assembly of biological parts so as to construct artificial biological systems. Over the past decade, synthetic biology has blossomed into a highly productive field, yielding advances in diverse areas such as neuroscience, cell-based therapies, and chemical manufacturing. Similarly, the field of gene therapy has made enormous strides both in proof-of-concept studies and in the clinical setting. One viral vector of increasing interest for gene therapy is the adenovirus (Ad). A major part of the Ad’s increasing momentum comes from synthetic biology approaches to Ad engineering. Convergence of gene therapy and synthetic biology has enhanced Ad vectors by mitigating Ad toxicity in vivo, providing precise Ad tropisms, and incorporating genetic circuits to make smart therapies which adapt to environmental stimuli. Synthetic biology engineering of Ad vectors may lead to superior gene delivery and editing platforms which could find applications in a wide range of therapeutic contexts.