Toggle light / dark theme

A team of researchers from Harvard University and Brigham and Women’s Hospital, Harvard Medical School, has developed a type of living ink that can be used to print living materials. In their paper published in the journal Nature Communications, the group describes how they made their ink and possible uses for it.

For several years, microbial engineers have been working to develop a means to create living materials for use in a wide variety of applications such as medical devices. But getting such materials to conform to desired 3D structures has proven to be a daunting task. In this new effort, the researchers have taken a new approach to tackling the problem—engineering Escherichia coli to produce a product that can be used as the basis for an ink for use in a 3D printer.

The work began by bioengineering the bacteria to produce living nanofibers. The researchers then bundled the fibers and added other ingredients to produce a type of living ink that could be used in a conventional 3D printer. Once they found the concept viable, the team bioengineered other microbes to produce other types of living fibers or materials and added them to the ink. They then used the ink to print 3D objects that had living components. One was a material that secreted azurin—an anticancer drug—when stimulated by certain chemicals. Another was a material that sequestered Bisphenol A (a toxin that has found its way into the environment) without assistance from other chemicals or devices.

Scientists have discovered a way to stop the COVID-19 virus from replicating in infected human cells, marking major progress towards a definitive treatment for the deadly illness and accentuating the potential of genetic engineering to cure viral diseases.

The study explores the use of CRISPR, a genome editing tool, and builds on research that started at Australia’s Peter MacCallum Cancer Center in 2019, when Dr. Mohamed Fareh and Prof. Joe Trapani showed that CRISPR could be used to eliminate abnormal RNAs that drive children’s cancers.

At the beginning of the pandemic, and in collaboration with Director Prof. Sharon Lewin and Dr. Wei Zhao from the Doherty Institute, the scientists reprogrammed the same CRISPR tool to suppress replication of the RNA virus SARS-CoV-2 — and importantly, its “variants of concern” — in a test tube model. SARS-CoV-2, which is short for Severe Acute Respiratory Syndrome Coronavirus 2, is the virus that causes COVID-19.

ROME, July 2 (Reuters) — A United Nations-backed scientific research centre has teamed up with an Italian tech firm to explore whether laser light can be used to kill coronavirus particles suspended in the air and help keep indoor spaces safe.

The joint effort between the International Centre for Genetic Engineering and Biotechnology (ICGEB) of Trieste, a city in the north of Italy, and the nearby Eltech K-Laser company, was launched last year as COVID-19 was battering the country.

They created a device that forces air through a sterilization chamber which contains a laser beam filter that pulverizes viruses and bacteria.

Scientists have discovered a new route to produce complex antibiotics exploiting gene editing to re-program pathways to future medicines urgently required to combat antimicrobial resistance, treat neglected diseases and tackle future pandemics.

Researchers from The University of Manchester have discovered a new way of manipulating key assembly line enzymes in bacteria which could pave the way for a new generation of antibiotic treatments.

New research published today in Nature Communications, describes how CRISPR-Cas9 gene editing can be used to create new nonribosomal peptide synthetase (NRPS) enzymes that deliver clinically important antibiotics. NRPS enzymes are prolific producers of natural antibiotics such as penicillin. However, up until now, manipulating these complex enzymes to produce new and more effective antibiotics has been a major challenge.

In this DNA factory, organism engineers are using robots and automation to build completely new forms of life.
»Subscribe to Seeker! http://bit.ly/subscribeseeker.
»Watch more Focal Point | https://bit.ly/2M3gmbK

Ginkgo Bioworks, a Boston company specializing in “engineering custom organisms,” aims to reinvent manufacturing, agriculture, biodesign, and more.

Biologists, software engineers, and automated robots are working side by side to accelerate the speed of nature by taking synthetic DNA, remixing it, and programming microbes, turning custom organisms into mini-factories that could one day pump out new foods, fuels, and medicines.

While there are possibly numerous positive and exciting outcomes from this research, like engineering gut bacteria to produce drugs inside the human body on demand or building self-fertilizing plants, the threat of potential DNA sequences harnessing a pathological function still exists.

Since artificial intelligence pioneer Marvin Minsky patented the principle of confocal microscopy in 1957, it has become the workhorse standard in life science laboratories worldwide, due to its superior contrast over traditional wide-field microscopy. Yet confocal microscopes aren’t perfect. They boost resolution by imaging just one, single, in-focus point at a time, so it can take quite a while to scan an entire, delicate biological sample, exposing it light dosages that can be toxic.

To push confocal imaging to an unprecedented level of performance, a collaboration at the Marine Biological Laboratory (MBL) has invented a “kitchen sink” confocal platform that borrows solutions from other high-powered imaging systems, adds a unifying thread of “Deep Learning” artificial intelligence algorithms, and successfully improves the confocal’s volumetric resolution by more than 10-fold while simultaneously reducing phototoxicity. Their report on the technology, called “Multiview Confocal Super-Resolution Microscopy,” is published online this week in Nature.

“Many labs have confocals, and if they can eke more performance out of them using these artificial intelligence algorithms, then they don’t have to invest in a whole new microscope. To me, that’s one of the best and most exciting reasons to adopt these AI methods,” said senior author and MBL Fellow Hari Shroff of the National Institute of Biomedical Imaging and Bioengineering.

Happy birthday, ISS.

The first components of the International Space Station (ISS) were launched on November 20, 1998, roughly 12 years after the first Soviet MIR-2 module was launched and a full 25 years after Skylab.

The ISS took 10 years and more than 30 missions to assemble. It is the result of unprecedented scientific and engineering collaboration among five space agencies representing 21 countries: NASA (United States of America), Roscosmos (Russia), JAXA (Japan), CSA (Canada), and ESA (16 EU countries and the UK).

With fully-equipped laboratories and advanced life support systems powered by solar arrays, the ISS has space for up to seven crew members to live and work, conducting many kinds of research in low Earth orbit.

Professor Norikazu Ichihashi and his colleagues at the University of Tokyo have successfully induced gene expression from a DNA, characteristic of all life, and evolution through continuous replication extracellularly using cell-free materials alone, such as nucleic acids and proteins for the first time.

The ability to proliferate and evolve is one of the defining characteristics of living organisms. However, no artificial materials with these characteristics have been created. In order to develop an artificial molecular system that can multiply and evolve, the information (genes) coded in DNA must be translated into RNA, proteins must be expressed, and the cycle of DNA replication with those proteins must continue over a long period in the system. To date, it has been impossible to create a reaction system in which the genes necessary for DNA replication are expressed while those genes simultaneously carry out their function.

The group succeeded in translating the genes into proteins and replicating the original circular DNA with the translated proteins by using a circular DNA carrying two genes necessary for DNA replication (artificial genomic DNA) and a cell-free transcription-translation system. Furthermore, they also successfully improved the DNA to evolve to a DNA with a 10-fold increase in replication efficiency by continuing this DNA replication cycle for about 60 days.

By adding the genes necessary for transcription and translation to the artificial genomic DNA developed by the group, it could be possible to develop artificial cells that can grow autonomously simply by feeding them low-molecular-weight compounds such as amino acids and nucleotides, in the future. If such artificial cells can be created, we can expect that useful substances currently produced using living organisms (such as substances for drug development and food production) will become more stable and easier to control.

This research has been led by Professor Norikazu Ichihashi, a research director of the project “Development of a self-regenerative artificial genome replication-transcription-translation system” in the research area “Large-scale genome synthesis and cell programming” under the JST’s Strategic Basic Research Programs CREST (Team type). In this research area, JST aims to elucidate basic principles in relation to the structure and function of genomes for the creation of a platform technology for the use of cells.

Dr. Yuval Noah Harari, macro-historian, Professor, best-selling author of “Sapiens” and “Homo Deus,” and one of the world’s most innovative and exciting thinkers, has a few hypotheses of his own on the future of humanity.

He examines what might happen to the world when old myths are coupled with new godlike technologies, such as artificial intelligence and genetic engineering.

Harari tackles into today’s most urgent issues as we move into the uncharted territory of the future.

According to Harari, we are probably one of the last generation of homo sapiens. Within a century earth will be dominated from entities that are not even human, intelligent species that are barely biological. Harari suggests the possibility that humans are algorithms, and as such Homo sapiens may not be dominant in a universe where big data becomes a paradigm.