Menu

Blog

Archive for the ‘bioengineering’ category: Page 83

Jan 11, 2021

Fluoride to the Rescue? A Big Leap Forward in Addressing Antibiotic-Resistant Bacteria

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health

In Michelle O’Malley’s lab, a simple approach suggests a big leap forward in addressing the challenge of antibiotic-resistant bacteria.

Scientists have long been aware of the dangerous overuse of antibiotics and the increasing number of antibiotic-resistant microbes that have resulted. While over-prescription of antibiotics for medicinal use has unsettling implications for human health, so too does the increasing presence of antibiotics in the natural environment. The latter may stem from the improper disposal of medicines, but also from the biotechnology field, which has depended on antibiotics as a selection device in the lab.

“In biotech, we have for a long time relied on antibiotic and chemical selections to kill cells that we don’t want to grow,” said UC Santa Barbara chemical engineer Michelle O’Malley. “If we have a genetically engineered cell and want to get only that cell to grow among a population of cells, we give it an antibiotic resistance gene. The introduction of an antibiotic will kill all the cells that are not genetically engineered and allow only the ones we want — the genetically modified organisms [GMOs] — to survive. However, many organisms have evolved the means to get around our antibiotics, and they are a growing problem in both the biotech world and in the natural environment. The issue of antibiotic resistance is a grand challenge of our time, one that is only growing in its importance.”

Jan 9, 2021

Can science reverse the ageing process?

Posted by in categories: bioengineering, biological, life extension, science

The idea of slowing down the ageing process and living healthier, more productive lives is hugely appealing. It’s led to a growing trend for people looking to take control of their own biology, optimising their bodies and minds through ‘biohacking’. But how safe and ethical is this pursuit of longevity? And are there more natural ways of expanding your healthy lifespan? Video by Dan John Animation by Adam Proctor.

Jan 8, 2021

Scientists Created Bacteria With a Synthetic Genome. Is This Artificial Life?

Posted by in categories: bioengineering, biotech/medical

Circa 2019 o.o!


In a milestone for synthetic biology, colonies of E. coli thrive with DNA constructed from scratch by humans, not nature.

Jan 3, 2021

Biochemists Switch DNA Functions on and Off Using Light

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Biochemists use protein engineering to transfer photocaging groups to DNA.

DNA (deoxyribonucleic acid) is the basis of life on earth. The function of DNA is to store all the genetic information, which an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell.

Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the different processes which take place in the cell – for example epigenetics, the key chemical change and regulatory lever in DNA.

Jan 2, 2021

Engineered bat virus stirs debate over risky research

Posted by in categories: bioengineering, biotech/medical

#JustAReminder why knowing the origin of this disease is so important. Shi Zhengli who ran the lab in Wuhan worked with Ralph Baric on this gain of function research.

Declan Butler.

12 November 2015

Continue reading “Engineered bat virus stirs debate over risky research” »

Jan 1, 2021

Why the Future Will Be Weird with Isaac Arthur

Posted by in categories: bioengineering, existential risks, nanotechnology, robotics/AI, space travel

Science and Futurism with Isaac Arthur is a YouTube channel which focuses on exploring the depths of concepts in science and futurism. Since its first episode in 2014, SFIA has considered topics ranging from the seemingly mundane, to the extremely exotic, featuring episodes on megastructure engineering, interstellar travel, the future of earth, and the Fermi paradox, among others. Yet regardless of how strange a subject may seem, Isaac always tries to ensure that the discussion is grounded in the known science of today.

Isaac Arthur joins John Michael Godlier on today’s Event Horizon to discuss these subjects, the future past 2020. Thoughts on life extension. Nanotechnology. Artificial intelligence. The Fermi paradox.

Continue reading “Why the Future Will Be Weird with Isaac Arthur” »

Jan 1, 2021

Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine

Posted by in categories: bioengineering, biotech/medical, life extension, nanotechnology, neuroscience

Shared last year, but with the talk of future regenerative medicine I think it is important: Regenerative medicine aims to engineer tissue constructs that can recapitulate the functional and structural properties of native organs. Most novel regenerative therapies are based on the recreation of a three-dimensional environment that can provide essential guidance for cell organization, survival, and function, which leads to adequate tissue growth. The primary motivation in the use of conductive nanomaterials in tissue engineering has been to develop biomimetic scaffolds to recapitulate the electrical properties of the natural extracellular matrix, something often overlooked in numerous tissue engineering materials to date. In this review article, we focus on the use of electroconductive nanobiomaterials for different biomedical applications, particularly, very recent advancements for cardiovascular, neural, bone, and muscle tissue regeneration. Moreover, this review highlights how electroconductive nanobiomaterials can facilitate cell to cell crosstalk (i.e., for cell growth, migration, proliferation, and differentiation) in different tissues. Thoughts on what the field needs for future growth are also provided.


Bioelectricity.

Dec 31, 2020

4 Ways CRISPR Is More Than Just Gene Editing

Posted by in categories: bioengineering, biotech/medical

While it’s probably most famous for its role in gene editing, CRISPR does more than just that: its ability to precisely cut and alter DNA could lead to new antibiotics, faster diagnosis tools, and more.

Hosted by: Hank Green.

Continue reading “4 Ways CRISPR Is More Than Just Gene Editing” »

Dec 30, 2020

Aerolysin nanopores decode digital information stored in tailored macromolecular analytes

Posted by in categories: bioengineering, biological, chemistry, computing, encryption, genetics, information science

Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of “big data.” The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

DNA has evolved to store genetic information in living systems; therefore, it was naturally proposed to be similarly used as a support for data storage (1–3), given its high-information density and long-term storage with respect to existing technologies based on silicon and magnetic tapes. Alternatively, synthetic informational polymers have also been described (5–9) as a promising approach allowing digital storage. In these polymers, information is stored in a controlled monomer sequence, a strategy that is also used by nature in genetic material. In both cases, single-molecule data writing is achieved mainly by stepwise chemical synthesis (3, 10, 11), although enzymatic approaches have also been reported (12). While most of the progress in this area has been made with DNA, which was an obvious starting choice, the molecular structure of DNA is set by biological function, and therefore, there is little space for optimization and innovation.

Dec 24, 2020

AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health, robotics/AI

Summary: Artificial intelligence technology redesigned a bacterial protein that helps researchers track serotonin in the brain in real-time.

Source: NIH

Serotonin is a neurochemical that plays a critical role in the way the brain controls our thoughts and feelings. For example, many antidepressants are designed to alter serotonin signals sent between neurons.

Continue reading “AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health” »

Page 83 of 204First8081828384858687Last