Toggle light / dark theme

Ultimately, the researchers discovered 270 different cycles of autocatalytic reactions. “Autocatalysis may not be that rare, but instead it might be a general feature of many different environments, even those that are really different from Earth,” Kaçar said.

Related: NASA may have unknowingly found and killed alien life on Mars 50 years ago, scientist claims

Most of the 270 cycles did not employ organic compounds. Some centered around elements that are absent or exceedingly rare in life on Earth, such as mercury, or the radioactive metal thorium. A number of cycles likely only happen under extremely high or low temperatures or pressures.

“Due to their ability to produce oxygen and function as bio-factories, this biotechnology could significantly enhance future space missions and human space exploration efforts,” Nicol Caplin, an astrobiologist at the European Space Agency (ESA), said in a statement.

Related: Scientists Send Kombucha to Space in Search for Extraterrestrial Life

Kombucha cultures, which are multi-species mélanges of bacteria and yeast, are key to creating the beverage. Add one such culture to room-temperature sweetened tea and, as long as the tea has plenty of sugar, microbes within will consume those nutrients, multiply and ferment the tea.

Self-sustaining chemical reactions that could support biology radically different from life as we know it might exist on many different planets using a variety of elements beyond the carbon upon which Earth’s life is based, a new study finds.

On Earth, life is based on organic compounds. These molecules are composed of carbon and often include other elements such as hydrogen, oxygen, nitrogen, phosphorus and sulfur.

In a new study, self-sustaining chemical reactions were discovered which carry the potential to support alien life, which is very different from the elements present on Earth.

The biology of Earth hinges on organic compounds which comprise carbon along with elements like phosphorus, sulphur, nitrogen, oxygen and hydrogen. Scientists believe that alternative chemical frameworks can lead to the existence of alien life forms.

For long, scientists have wondered if alien life might evolve on the basis of significantly different chemistry. Researchers have speculated if silicon may work as a backbone for biology.

The search for definitive biosignatures—unambiguous markers of past or present life—is a central goal of paleobiology and astrobiology. We used pyrolysis–gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method’s utility for detecting alien biology.

The universe is bigger than you think.

This means any deep-space future awaiting humanity outside our solar system will remain beyond the span of a single life until we develop a means of propulsion that outclasses conventional rockets. And, when three studies rocked the world earlier this year, it felt like a dream come true: Warp drive was no longer science fiction, potentially unlocking a theoretical basis to build faster-than-light warp drive engines that could cut a trip to Mars down to minutes.

However, a recent study shared in a preprint journal cast doubt on the theory, pointing to a gap in the math that could put the viability of a physical warp drive back into the realm of speculation.

A large team of scientists with a wide variety of backgrounds has joined together to suggest that a data-driven approach to search for life elsewhere in the universe should replace methods now in use. In their paper posted on the arXiv preprint server, the group explains how a data-driven approach could help prevent human-centered biases from overlooking potential signs of life.

Over the past few decades, scientists have become much more open to the possibility of discovering life in places other than on Earth. And because of that, more work has been done to find life—or at least signs of it. But, as the group on this new effort points out, most such approaches tend to expect that other forms of life will resemble those found on Earth. And that could be blinding scientists to signs of life that might be there but are being missed.

To overcome such a problem, the researchers suggest a more data-driven approach be used. They note that a lot of data have been obtained regarding various parts of the night sky. They also note that the data are in different formats. Some are radio wave graphs, while others describe the attributes of light emitted by a section of the sky, or even a given planet.

Look, we write rather a lot about the Fermi Paradox, so trust us when we say that the Berserker Hypothesis may be the darkest explanation out there. Not only would it mean that the universe is a dead, lifeless husk, but it would also imply that our own destruction is imminent.

The Fermi Paradox at its most basic is, given the high probability that alien life exists out there (bearing in mind the vastness of space and that we keep finding planets within habitable zones), why has nobody got in touch yet?