Toggle light / dark theme

Scientists Scanning Beautiful Star System for Signs of Alien Tech

Last year, scientists discovered a mathematically perfect star system — and now, they’re looking into whether it might contain signs of alien tech.

Dubbed HD 110067, the star system located just 100 light-years from Earth has six exoplanets that are each perfectly spaced apart in the sort of mathematical harmony rarely seen in our chaotic Universe. In a paper published in the journal Nature last November, scientists listed off the astounding attributes of the system, which unfortunately did not include any planets in the so-called “habitable zone,” or distance from the orbit-inducing star that could support life as we know it here on Earth.

All the same, scientists aren’t done looking, and as radio astronomer and alien life-seeking expert Steve Croft of the University of Berkeley told Space.com, there’s no reason that advanced civilizations may not have visited HD 110,067 and potentially left some of their technology behind.

Newly discovered Carbon Monoxide-Runaway Gap can help Identify Habitable Exoplanets

The search for habitable exoplanets involves looking for planets with similar conditions to the Earth, such as liquid water, a suitable temperature range and atmospheric conditions. One crucial factor is the planet’s position in the habitable zone, the region around a star where liquid water could potentially exist on the planet’s surface. NASA’s Kepler telescope, launched in 2009, revealed that 20–50% of visible stars may host such habitable Earth-sized rocky planets. However, the presence of liquid water alone does not guarantee a planet’s habitability. On Earth, carbon compounds such as carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) played a crucial role in shaping the climate and biogeochemistry and could have contributed to the emergence of life.

Taking this into consideration, a recent study by Associate Professor Kazumi Ozaki from Tokyo Institute of Technology, along with Associate Researcher Yasuto Watanabe from The University of Tokyo, aims to expand the search for habitable planets. Published in the Astrophysical Journal(External site) on 10 January 2024, the researchers used atmospheric modeling to identify conditions that could result in a CO-rich atmosphere on Earth-like planets that orbit sun-like (F-, G-, and K-type) stars. This phenomenon, known as CO runaway, is suggested by atmospheric models to have possibly occurred in early planetary atmospheres, potentially favoring the emergence of life.

“The possibility of CO runaway is critical in resolving the fundamental problem regarding the origin of life on Earth because various organic compounds suitable for the prebiotic chemistry are more likely to form in a CO-rich atmosphere than in a CO2-rich atmosphere,” explains Dr. Ozaki.

NASA’s Next-Gen Exoplanet-Imaging Technology Advances Search for Extraterrestrial Life

NASA ’s Roman Space Telescope ’s Coronagraph Instrument, designed to observe distant exoplanets by blocking stellar light, has passed essential tests, marking a significant advancement in space observation technology and the search for extraterrestrial life.

A cutting-edge tool to view planets outside our solar system has passed two key tests ahead of its launch as part of the agency’s Roman Space Telescope by 2027.

The Coronagraph Instrument on NASA’s Nancy Grace Roman Space Telescope will demonstrate new technologies that could vastly increase the number of planets outside our solar system (exoplanets) that scientists can directly observe. Designed and built at the agency’s Jet Propulsion Laboratory in Southern California, it recently passed a series of critical tests ahead of launch. That includes tests to ensure the instrument’s electrical components don’t interfere with those on the rest of the observatory and vice versa.

ERS-2: A European Space Agency satellite will reenter Earth’s atmosphere this week

A European Space Agency satellite is expected to reenter and largely burn up in Earth’s atmosphere on Wednesday morning.

The agency’s Space Debris Office, along with an international surveillance network, is monitoring and tracking the Earth-observing ERS-2 satellite, which is predicted to make its reentry at 3:53 p.m. ET Wednesday, with a 7.5-hour window of uncertainty. The ESA is also providing live updates on its website.

“As the spacecraft’s reentry is ‘natural’, without the possibility to perform manoeuvers, it is impossible to know exactly where and when it will reenter the atmosphere and begin to burn up,” according to a statement from the agency.

Human Aliens

As we search the heavens for signs of alien life, is it possible that the easiest place to find aliens is to look in the mirror?

Try Cell to Singularity, free to play: https://l.linklyhq.com/l/1uNoF

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits: Human Aliens.
Episode 420a; November 12, 2023
Written, Produced \& Narrated by:
Isaac Arthur.

Editors:
Donagh Broderick.

Graphics by:

/* */