Toggle light / dark theme

3D-printed home cuts construction time from 4 weeks to 28 hours, says Habitat for Humanity

Virginia mom April Stringfield is now the owner of Habitat for Humanity’s first 3D-printed home — built in record time, thanks to new construction tech.

The massive time and money savings from 3D printing means the nonprofit is very likely to print more in the future.

The American dream: Home ownership is one of the best ways to improve your economic standing in the U.S., as it can help you build equity and improve your credit score.

3D-bioprinted tissues can now be stored in the freezer until needed

A major obstacle to widespread study and clinical use of 3D tissues is their short shelf-life, which may be anywhere from a just few hours to a few days. As in the case of an organ transplant, a bioprinted tissue must be transported rapidly to the location where it is needed, or it will not be viable. In the journal Matter on December 21st, researchers at Brigham and Women’s Hospital and Harvard Medical School describe their work combining 3D bioprinting with cryopreservative techniques to create tissues which can be preserved in a freezer at-196°C and thawed within minutes for immediate use.

“For conventional bioprinting, there is basically no shelf life. It’s really just print, and then use, in most cases,” says lead author Y. Shrike Zhang (@shrikezhang), a biomedical engineer at Brigham and Women’s Hospital. “With cryobioprinting, you can print and store in the frozen state for basically as long as you want.”

The use of 3D bioprinting to create artificial human tissue first appeared twenty years ago. As in conventional 3D printing, an ink is extruded layer by layer through a nozzle into a pre-specified shape. In the case of bioprinting, the ink is typically made up of a gelatin-like scaffolding embedded with living cells. Cryobioprinting works the same way, except the printing is performed directly onto a cold plate held at temperatures down to-20°C. After the tissues are printed, they are immediately moved to cryogenic conditions for long-term storage.

China’s Unmanned Lunar Station Will Be Ready in 2027 Amid Space Race With the US

Updating the goal of Chang’e 8 mission.

Chinese space authorities told state media South China Morning Post (SCMP) that the unmanned lunar station, jointly built with Russia, will be completed around 2027.

The new plan, which is eight years earlier than previously scheduled, will help China get ahead of the U.S. in the space race.

China’s Chang’e 8 moon landing mission was originally aimed to carry out scientific studies like 3D-printing lunar dust, but the Deputy Director of China National Space Administration (CNSA) Wu Yanhua announced that the new target of the administration is putting an unmanned research station on the lunar surface, which was previously scheduled for 2035.

Wu, while not disclosing the details behind the decision, underlined that the mission was to “build a solid foundation for the peaceful use of lunar resources”.

China’s lunar program has progressed steadily and at its own pace for years, with Chinese space authorities repeatedly claiming that the country was not interested in a space race like the one during the Cold War.

Full Story:

Virginia family gets keys to Habitat for Humanity’s first 3D-printed home in the US

One Virginia family received the keys to their new 3D-printed home in time for Christmas.

The home is Habitat for Humanity’s first 3D-printed home in the nation, according to a Habitat news release.

Janet V. Green, CEO of Habitat for Humanity Peninsula and Greater Williamsburg, told CNN it partnered with Alquist, a 3D printing company, earlier this year to begin the process.

New Double Helixes Store Magnetic Information in Three Dimensions

Today, magnets have many applications being used for energy generation, data storage, and computing. But magnetic computing devices in two-dimensional systems are quickly approaching their shrinking limit.

That’s why, we have witnessed a growing trend in moving to three dimensions, where higher densities can be achieved and three-dimensional geometries can offer new functionalities.

Now, an international team led by Cambridge University’s Cavendish Laboratory has used an advanced 3D printing method they developed to create magnetic double helices that produce nanoscale topological textures in the magnetic field, opening the door to the next generation magnetic devices.

Antimicrobial 3D Printed Objects in the Fight Against Pandemics

The uncharted nature of the COVID-19 pandemic has caused uncertainty globally, resulting in many health care professionals and key-workers being left with supply shortages in medical consumables and personal protective equipment, exacerbated by supply line issues and in some cases delays resulting from governmental policies. 3D printing (3DP) has played an important role in providing essential items to hospitals and the wider communities, such as visors, face masks, and ventilator components. This short-review article covers the potential of antimicrobial materials in the manufacturing of 3DP essential products, as an approach for added protection against pandemics.

Microbots in your blood could help destroy cancer

4D printing works the same as 3D printing, the only difference is that the printing material allows the object to change shape based on environmental factors.

In this case, the bots’ hydrogel material allows them to morph into different shapes when they encounter a change in pH levels — and cancer cells, as it happens, are usually more acidic than normal cells.

The microrobots were then placed in an iron oxide solution, to give them a magnetic charge.

This combination of shape-shifting and magnetism means the bots could become assassins for cancer — destroying tumors without the usual collateral damage on the rest of the body.

Full Story:


A school of fish-y microbots could one day swim through your veins and deliver medicine to precise locations in your body — and cancer patients may be the first people to benefit from this revolution in nanotechnology.

3D printed nanomagnets unveil a world of patterns in the magnetic field

Scientists have used state-of-the-art 3D printing and microscopy to provide a new glimpse of what happens when taking magnets to three-dimensions on the nanoscale—1000 times smaller than a human hair.

The international team led by Cambridge University’s Cavendish Laboratory used an advanced 3D printing technique they developed to create magnetic double helices—like the double helix of DNA—which twist around one another, combining curvature, chirality, and strong magnetic interactions between the helices. Doing so, the scientists discovered that these magnetic double helices produce nanoscale topological textures in the magnetic field, something that had never been seen before, opening the door to the next generation of magnetic devices. The results are published in Nature Nanotechnology.

Magnetic devices impact many different parts of our societies, magnets are used for the generation of energy, for data storage and computing. But magnetic computing devices are fast approaching their shrinking limit in two-dimensional systems. For the next generation of computing, there is growing interest in moving to three dimensions, where not only can higher densities be achieved with 3D nanowire architectures, but three-dimensional geometries can change the and offer new functionalities.

Shellac for printed circuits

More precise, faster, cheaper: Researchers all over the world have been working for years on producing electrical circuits using additive processes such as robotic 3D-printing (so-called robocasting) with great success, but this is now becoming a problem. The metal particles that make such 3D substrates electrically conductive are exacerbating the problem of electronic waste, especially since the waste generated is likely to increase in the future in view of new types of disposable sensors, some of which are only used for a few days.

This constitutes unnecessary waste, according to Gustav Nyström, head of Empa’s Cellulose & Wood Materials lab: “There is an urgent need for materials that balance electronic performance, cost and sustainability.” To develop an environmentally friendly ink, Nyström’s team therefore set ambitious goals: metal-free, non-toxic, biodegradable. And with in mind: easily formable and stable to moisture and moderate heat.

Iowa State University gets $1.4 million to buy 3D concrete printer for low-cost homebuilding

Iowa’s first 3D-printed home could be ready for its new owners by this time next year.

The Iowa Economic Development Authority on Friday approved $1.4 million for the Iowa State University College of Design to purchase a 3D printer capable of producing concrete houses. Its goal is to build a neighborhood of up to 34 3D-printed homes in Hamburg, a southwest Iowa town recovering from a massive flood two years ago.

The agency’s director, Debi Durham, said the college also will develop a curriculum for training contractors on 3D printing and new state building codes in order to allow wide use of the technique in Iowa.