Toggle light / dark theme

Interesting; however, I will be interested still how QC and 3D printing can converge and possibly address challenges such as this one, mass production of synthetic diamonds, cell circuitry, etc.

https://3dprint.com/137952/3d-printing-water-treatment-industry/


You might be surprised at how often 3D printing and water intermingle. After all though—as you’ll well remember if you try to go without it for a few hours—water is our life force. And as innovative 3D technology is used at the hands of researchers and innovators around the world to make positive transformations in nearly every industry, surely water should be included.

Whether we are discussing how to recycle water bottles in an attractive manner, adopt new methods for desalination to increase worldwide accessibility, or actually using 3D scanners to detect corrosion in older water pipes in the UK, the seeds have been planted for allowing 3D technology to play a substantial and versatile role in how we deal with water in the future, on many levels.

Read more

For every star performing biotech, life sciences or innovative 3D printing company there are another 9 where investors would have been better off keeping their cash under a mattress.

As Organovo report their first full year operating on a commercial basis we look for clues as to which category they might fit into. With more than 25 patents secured and another 80 pending, does the current share price and today’s published financial accounts tell the full story?

Organovo increased total revenue from $570 thousand in 2015 to $1.5 million for 2016. However, losses also increased from $30.8 million to $38.6 million. Although yet to turn a profit, Organovo were always going to generate a sizeable amount of text in the 3D Printing media and beyond. The promise of combining biophysics, developmental biology and of course 3D printing to advance healthcare and life sciences is an attractive proposition.

Read more

Wow — scary. Not scary for law abiding citizens to do this; scary due to criminals & terrorists. And, we have seen the ammo and high quanity gun clip already produced as well.


The 28-year-old is the face of open-source 3D gun design, an online movement of enthusiasts who use 3D printers and machining tools to build their own homemade weapons – ones that can shoot very real, and very deadly bullets.

Wilson isn’t some gun loon on an online soapbox; he is a well-educated, well-spoken, very argumentative young man who’s as responsible for creating his press portrayal as the journalists who’ve written about him. “I’m now more and more of a self-caricature,” he tells me. “I’ve had to become a fanatic over the past three years just to move the ball another three yards.”

Read more

Wishing them luck.


Tennessee -based Branch Technology has announced it will begin construction of a 3D-printed house in 2017. Designed by Honolulu-based WATG, the project was initiated for the Freeform Home Design Challenge, which asked participants to design for Branch’s Cellular Fabrication (C-Fab) 3D printing technology. The small house designs were required to be between 600 and 800 square feet.

Branch’s C-Fab technology involves 3D printing carbon-fiber-reinforced ABS plastic with a large robotic arm. The resulting formwork can then be covered in more traditional building materials, such as concrete or foam. Instead of the typical completely 3D printed additive technique, C-Fab uses an algorithm to formulate an interior framework for the structure.

WATG’s design, entitled Curve Appeal, will be built at Branch Technology’s lab in Chattanooga, Tennessee. The house is comprised of a curving shell around an open plan. The form of the building also provides a car port. The interior of the house is divided up with class walls and a solid core.

Read more

Very promising. I imagine 3D Printers being able to create synthesize diamonds will be a very profitable business to get in to because of the stabilizing benefits that the nanodiamonds bring to Quantum Computing and nanotechnology in general.


Nanomaterials have the potential to improve many next-generation technologies. They promise to speed up computer chips, increase the resolution of medical imaging devices and make electronics more energy efficient. But imbuing nanomaterials with the right properties can be time consuming and costly. A new, quick and inexpensive method for constructing diamond-based hybrid nanomaterials could soon launch the field forward.

University of Maryland researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods. The technique is described in the June 8, 2016 issue of the journal Nature Communications (“Nanostructures for Coupling Nitrogen-Vacancy Centers to Metal Nanoparticles and Semiconductor Quantum Dots”).

electron microscope image shows a hybrid nanoparticle consisting of a nanodiamond (roughly 50 nanometers wide)  covered in smaller silver nanoparticles

This electron microscope image shows a hybrid nanoparticle consisting of a nanodiamond (roughly 50 nanometers wide) covered in smaller silver nanoparticles that enhance the diamond’s optical properties. (Image: Min Ouyang)

Read more

Medical/ Biocomputing will only continue to grow and advance as a result of the demand for more improved experiences by consumers and business in communications and entertainment, food, home life, travel, business, etc.

Today, we have seen early opportunities and benefits with 3D printing, BMI, early stage Gene/ Cell circuitry and computing. In the future, we will see these technologies more and more replaced by even more advance Biocomputing and gene circuitry technology that will ultimately transform the human experiences and quality of life that many like to call Singularity.


Printing technology has come a long way from screechy dot-matrix printers to 3D printers which can print real life objects from metals, plastics, chemicals and concrete. While, at first, 3D printers were being used to create just basic shapes with different materials, more recently, they have been used to create advanced electronics, bio-medical devices and even houses.

Aircraft manufacturer Airbus recently showcased the world’s first 3D-printed mini aircraft, Thor, at the International Aerospace Exhibition and Air Show in Berlin. Although Airbus and its competitor have been using 3D-printed parts for their bigger assemblies, recent attempt shows that aviation may be ready for a new future with much lighter and cheaper planes given 3D printing not only cuts down the costs with less wastage, it also makes the plane lighter, thereby making them faster and more fuel efficient. But planes and toys is not what 3D printing might be restricted to; though in the elementary stage at the moment, the technology is being used for creating complex electronics like phones and wearables and may be able to reduce costs for manufacturers like Samsung and Apple.

One of the most important uses for the technology comes in the field of medical sciences. While pharma companies have been working on producing medicines from 3D printers, with one winning approval from the US’s Food and Drug Administration earlier this year, the technology is also being used to create bones, cartilages and customisable prosthetic limbs. But the real test for the technology lies in bioprinting—creating living cells via a 3D printer. Doctors have been using 3D printed organs to practice on, but scientists at research institutes have been experimenting with printing stem cells, skin tissue, organs and DNA. Though this is still decades from being a reality, printing of regenerative tissues can help cure heart ailments. 3D printing is also helping in construction, with a printer being used to create the first office space in Dubai using concrete blocks. The city aims that 25% of its buildings will be 3D printed by 2030.

Read more

Airbus introduces the aviation world to a mini-plane called THOR (Test of High-tech Objectives in Reality). It is the first aircraft to be produced using 3D printing technology.

Airbus, a leading aircraft manufacturer, has just unleashed THOR—Test of High-tech Objectives in Reality—a miniature aircraft constructed from 3D printing technology. The windowless, pilotless, and propeller-driven THOR weighs in at 21 kg, and measures less than 4 m long.

Though it is much smaller than a regular jet, THOR is capable of stable flight and even promises to save on time, fuel and money.

Read more