Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Crystal-free mechanoluminescence illuminates new possibilities for next-generation materials

In the 17th century, Francis Bacon described a simple experiment—scraping and fracturing hard sugar in the dark to see sparks of light. This phenomenon is called mechanoluminescence (ML) or triboluminescence (TL), the process of materials emitting light under mechanical stimulation, like grinding or crushing. Usually, ML properties of luminescent compounds are observed in rigid crystalline systems, which limits their real-world applications.

Now, researchers at the Okinawa Institute of Science and Technology (OIST) have found a way to generate ML in non-crystalline materials, bringing a new wave of potential applications in engineering, industrial safety and beyond.

“Mechanical stimulation of crystals causes fractures. As the crystals are damaged and break down in size, they also start to lose their ML properties, which vastly restricts their application. In , ML is highly dependent on structure and packing, adding complex design requirements. That’s why we were interested in amorphous ML materials with longer-lasting luminescence,” explains Professor Julia Khusnutdinova, head of the Coordination Chemistry and Catalysis Unit at OIST.

A new, expansive view of the Milky Way reveals our galaxy in unprecedented radio color

Astronomers from the International Centre of Radio Astronomy Research (ICRAR) have created the largest low-frequency radio color image of the Milky Way ever assembled. This spectacular new image captures the Southern Hemisphere view of our Milky Way galaxy, revealing it across a wide range of radio wavelengths, the colors of radio light.

A paper describing this work appears in Publications of the Astronomical Society of Australia.

It provides astronomers with new ways to explore the birth, evolution, and death of stars in our galaxy.

AI-powered supercomputer decodes proteins to speed up drug discovery

Deeper insight into PPIs is essential for advancing the development of new treatments and vaccines.

PLM-Interact offers a powerful new lens into these critical mechanisms.

The key to PLM-Interact’s success lies in its training. Leveraging the supercomputer, the researchers trained the model on as many as 421,000 human protein pairs.

/* */