Toggle light / dark theme

Crowdsourcing treatments that work — yael elish — CEO & founder, stuffthatworks.


Yael Elish is CEO and Founder of StuffThatWorks (https://www.stuffthatworks.health/), a company that offers an online platform where people suffering from chronic diseases can share information to learn which treatments work best for their specific condition, based on the experience of their peers combined with a smart, AI-based crowdsourcing system.

A passionate entrepreneur with expertise in crowdsourcing and consumer-facing products, Yael was on the Waze founding team, where she drove the overall product strategy that led the company from User One to one of the world’s most notable crowdsourcing endeavours. She also co-founded eSnips and NetSnippet, and was part of the senior management team that took Commtouch to its successful NASDAQ IPO in 2000.

Weill Cornell Medicine investigators have identified in a preclinical model a specific brain circuit whose inhibition appears to reduce anxiety without side effects. Their work suggests a new target for treating anxiety disorders and related conditions and demonstrates a general strategy, based on a method called photopharmacology, for mapping drug effects on the brain.

In their study, published Jan. 28 in Neuron, the researchers examined the effects of experimental drug compounds that activate a type of brain-cell receptor called the metabotropic glutamate receptor 2 (mGluR2). While these receptors are found on neurons within many brain circuits, the team showed that activating them in a specific circuit terminating in an emotion-related brain region called the amygdala reduces signs of anxiety without apparent adverse side effects. Current treatments for anxiety disorders, panic disorder and associated conditions can have unwanted side effects including cognitive impairments.

“Our findings indicate a new and important target for the treatment of anxiety-related disorders and show that our photopharmacology-based approach holds promise more broadly as a way to precisely reverse-engineer how therapeutics work in the brain,” said study senior author Dr. Joshua Levitz, an associate professor of biochemistry at Weill Cornell Medicine.

The aim of the following paper was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling.

— Pedrosa, et al.

Full text is available


Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography.

Electric sparks are used for welding, powering electronics, killing germs or for igniting the fuel in some car engines. Despite their usefulness, they are hard to control in open space—they split into chaotic branches that tend to go toward the closest metallic objects.

A recent study published in Science Advances uncovers a way of transporting electricity through air by . The level of control of the electric sparks allows guidance of the spark around obstacles, or guiding it to hit specific spots, even in non-conductive materials.

“We observed this phenomenon more than one year ago, then it took us months to control it, and even longer to find an explanation,” says Dr. Asier Marzo from the Public University of Navarre, lead researcher of the work.

The Sustainable Development Goals (SDGs) constitute the leading global framework for achieving human progress, economic prosperity, and planetary health. This framework emphasizes issues such as public health, education for all, gender equality, zero hunger, adoption of clean and renewable energy, and biodiversity conservation. Yet, despite this comprehensive agenda, questions remain about how different nations navigate their own paths toward these goals.

A recent study, published in Nature Communications provides insights into the trajectories of 166 countries as they have worked toward the SDGs over the past two decades.

By applying and the Product Space methodology, commonly used in the field of complexity economics, the researchers constructed the “SDG Space of Nations.” The elaborate model shows that countries do not simply march in lockstep toward sustainable development; instead, they cluster into distinctive groups, each with its own strengths and specializations, sometimes quite unexpected.

Scientists have developed a novel tool designed to protect and conserve coral reefs by providing them with an abundance of feeding opportunities.

The device, dubbed the Underwater Zooplankton Enhancement Light Array (UZELA), is an autonomous, programmable underwater light that works to draw in nearby zooplankton, microscopic organisms that coral feed on.

After testing the submersible on two species of coral native to Hawaii over six months, researchers found that UZELA could greatly enhance local zooplankton density and increase the feeding rates of both healthy and bleached coral. Importantly, providing coral with greater amounts of food makes them stronger and more likely to be resilient against certain environmental threats, like or .

Phase transitions, shifts between different states of matter, are widely explored physical phenomena. So far, these transitions have primarily been studied in three-dimensional (3D) and two-dimensional (2D) systems, yet theories suggest that they could also occur in some one-dimensional (1D) systems.

Researchers at the Duke Quantum Center and the University of Maryland recently reported the first observation of a finite-energy phase transition in a 1D chain of atoms simulated on a . Their paper, published in Nature Physics, introduces a promising approach to realizing finite-energy states in quantum simulation platforms, which opens new possibilities for the study of phase transitions in 1D systems.

The recent study is a that combined the work of theoretical physicists at the University of Maryland with that of at the Duke Quantum Center, where the was placed and where the experiments were carried out.

Researchers at the Ernst Strüngmann Institute in Frankfurt am Main, Germany, led by Wolf Singer, have made a new discovery in understanding fundamental brain processes. For the first time, the team has provided compelling evidence that the brain’s characteristic rhythmic patterns play a crucial role in information processing. While these oscillatory dynamics have long been observed in the brain, their purpose has remained mostly elusive until now.

The study has the potential to transform our understanding of brain activity. Using , the researchers show that recurrent networks with oscillating nodes demonstrate better performance compared to non-oscillating networks and replicate many experimentally observed phenomena.

These findings indicate that oscillatory dynamics are not just an epiphenomenon but are essential for efficient computation in the brain. The work is published in the journal Proceedings of the National Academy of Sciences.