Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Reversing The Age-Related DHEA-S Decline: Cholesterol, Gut Bacteria

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Astronomers Catch Planets in the Act of Being Born

Astronomers have spotted centimeter-sized “pebbles” swirling around two infant stars 450 light-years away, revealing the raw ingredients of planets already stretching to Neptune-like orbits. Using the UK’s eMERLIN radio array, the PEBBLeS project found these rocky seeds in unprecedented detail, bridging the elusive gap between dusty discs and fully-formed worlds. The discovery hints that systems even larger than our own could be commonplace and sets the stage for the upcoming Square Kilometre Array to map hundreds more planetary nurseries.

A fascinating glimpse into how a solar system like our own is born has been revealed with the detection of planet-forming ‘pebbles’ around two young stars.

These seeds to make new worlds are thought to gradually clump together over time, in much the same way Jupiter was first created 4.5 billion years ago, followed by Saturn, Uranus, Neptune, Mercury, Venus, Earth and Mars.

Before the Big Bang — What Came Before Time?

Join us as we journey beyond the birth of the universe to unravel the mysteries of what might have preceded the Big Bang—and whether time itself had a beginning.

Watch my exclusive video Mass Drivers on the Moon: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:
Before the Big Bang — What Came Before Time?
Episode 738; July 20, 2025
Written, Produced & Narrated by: Isaac Arthur.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
0:00 Intro Asking the Impossible.
2:08 The Limits of Time and Spacetime.
7:45 Beyond the Big Bang: Alternate Beginnings.
14:38 Other Realities: Higher Dimensions and Shadow Universes.
18:28 Emergent Time.
22:38 Bubble Collisions and Multiverse Scars.
24:44 Conclusion: What Came Before Time?

Levin Λ Friston Λ Fields: “Meta” Hard Problem of Consciousness

Karl Friston, Michael Levin, and Chris Field sit down for an epochal conversation on cognition and consciousness.
Sponsor: Brilliant: https://brilliant.org/TOE for 20% off.

Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.
Merch: https://tinyurl.com/TOEmerch.

CORRECTION:
- Chris Fields emailed me the following: “I referred to Peter Strawson when I meant to refer to his son, Galen Strawson, who has done the work on panpsychism.”

LINKS MENTIONED:
- Curt’s AMA #:3 https://youtu.be/SX9q2D6b5bc.
- Karl Friston #2: https://youtu.be/SWtFU1Lit3M
- Karl Friston #1: https://youtu.be/2v7LBABwZKA
- Michael Levin: https://youtu.be/Z0TNfysTazc.

TIMESTAMPS:
00:00:00 Introduction.
00:03:20 Michael Levin answers: “What do you respect about Chris / Karl?“
00:04:45 Chris Fields answers: “What do you respect about Michael / Karl?“
00:05:45 Karl Friston answers: “What do you respect about Chris / Michael?“
00:07:46 Self organization / Autopoiesis / Why does life form?
00:12:11 How does cognition emerge from smaller parts?
00:14:18 Why do we see “things” independent from one another? Why in space / time?
00:18:40 Relationship between cognition and consciousness.
00:22:03 The Meta Hard Problem.
00:30:37 Why is complexity associated with “awareness”?
00:35:56 Is society one large brain, with each person acting as a neuron?
00:44:17 Duality between: Did you act on the world? Or did the world act on you?
00:51:32 Babbling, and becoming a “self“
01:11:22 “300 milliseconds” is a special unit of time for consciousness.
01:15:49 Quantum Babbling.
01:21:49 The difference between “randomness” and “quantum randomness“
01:30:03 The difference between “external” and “internal” are both real and illusory.
01:33:41 Studying consciousness / the self and the concomitant existential dread.
01:48:19 Michael Levin: “Something important goes all the way down“
01:51:12 Science starts with faith.

2D Materials for Integrated Electronics

As many in the field would agree, the growing interest in two-dimensional (2D) materials is not just a trend, it reflects real progress and curiosity. Materials like graphene and MoS2 have shown fascinating behaviour, particularly because they are atomically thin and yet still possess strong electrical, optical, and mechanical properties. These features make them promising candidates for new directions in electronics. That said, turning this promise into reliable technology is still a work in progress.

This Collection focuses on how 2D materials are being developed and used in integrated electronics. The emphasis is not only on device performance, but also on the actual process of bringing these materials into practical systems. From what I have seen, some of the most exciting results come from experiments where 2D materials are added into traditional semiconductor setups, whether that is in transistors, photodetectors, or memory elements. But challenges like scalability, environmental stability, and material quality remain real obstacles.

We’re interested in contributions across the board: device demonstrations, growth techniques, interface studies, or even theoretical modelling that can guide experimental designs. For instance, studies on how these materials interact with metal contacts, or how to reduce contact resistance, are very relevant here. So are efforts to pattern or align 2D layers over large areas, which is a challenge still not fully solved.

Defect Characterization and Control in 2D Materials and Devices

As soon as 2DMs are employed for devices, at some point they have to be grown or transferred onto insulators. A wide range of insulators has already been suggested for the use with 2DMs, starting with the amorphous 3D oxides known from Si technologies (SiO2, HfO2, Al2O3), and expanding to native 2D oxides (MoO3, WO3, Bi2SeO5), layered 2D crystals (hBN, mica) and 3D crystals like fluorides (CaF2, SrF2, MgF2) or perovskites (SrTiO3, BaTiO3). These insulators also contain various defects which can also be detrimental to device stability and reliability. Again, on the other hand, these defects can be exploited for added functionality like resistive switching devices, neuromorphic devices, and sensors.

Finally, 2DMs need to be contacted with metals, which typically introduces defects in the 2DMs which then have a strong impact on the behaviour of the resulting Schottky contacts as they tend to pin the Fermi-level and result in large series resistances.

This collection aims to provide a comprehensive overview of the latest research on defect characterization and control in 2D materials and devices. By bringing together studies that utilize advanced theoretical calculations, such as density functional theory (DFT) and first-principles calculations, as well as experimental techniques like transmission electron microscopy (TEM), scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), and various optical spectroscopies, this collection seeks to deepen our understanding of defect formation, propagation, control, and their impact on device performance.