Toggle light / dark theme

Amid mounting concern about a novel coronavirus spreading from China, Lawrence Livermore National Laboratory (LLNL) researchers have developed a preliminary set of predictive 3D protein structures of the virus to aid research efforts to combat the disease.

The models are based on the genomic sequence of the novel coronavirus and a protein found in the virus that causes Severe Acute Respiratory Syndrome (SARS), which closely resembles the new virus.

The researchers plan to use the models to accelerate countermeasure design, using a combination of machine learning, biological experiments and simulation on supercomputers.


As global concern continues to rise about a novel coronavirus spreading from China, a team of Lawrence Livermore National Laboratory (LLNL) researchers has developed a preliminary set of predictive 3D protein structures of the virus to aid research efforts to combat the disease.

The team’s predicted 3D models, developed over the past week using a previously peer-reviewed modeling process, are based on the genomic sequence of the novel coronavirus and the known structure of a protein found in the virus that causes Severe Acute Respiratory Syndrome (SARS), also a coronavirus that closely resembles the new virus.

“A major part of the value of these new structural models is that they present the predicted protein in complex with SARS-neutralizing antibodies,” said Adam Zemla, an LLNL structural biologist and mathematician. “This can be thought of as the first step for the global research community to identify and model how therapeutic antibodies can be designed to fight the novel coronavirus.”

Researchers at the University of Toronto Scarborough transformed used cooking oil from deep fryers at McDonald’s into a biodegradable resin.

Turns out that leftover cooking oil in McDonald’s deep fryers is actually good for 3D printing.

Researchers at the University of Toronto Scarborough were able to turn it into a biodegradable resin, they announced in a press release.

Most modern electronic devices rely on tiny, finely-tuned electrical currents to process and store information. These currents dictate how fast our computers run, how regularly our pacemakers tick and how securely our money is stored in the bank.

In a study published in Nature Physics, researchers at the University of British Columbia have demonstrated an entirely new way to precisely control such electrical currents by leveraging the interaction between an electron’s spin (which is the quantum it inherently carries) and its orbital rotation around the nucleus.

“We have found a new way to switch the electrical conduction in materials from on to off,” said lead author Berend Zwartsenberg, a Ph.D. student at UBC’s Stewart Blusson Quantum Matter Institute (SBQMI). “Not only does this exciting result extend our understanding of how electrical conduction works, it will help us further explore known properties such as conductivity, magnetism and superconductivity, and discover new ones that could be important for quantum computing, data storage and energy applications.”

Roboticists at the California Institute of Technology launched an initiative called RoAMS, which uses the latest research in robotic walking to create a new kind of medical exoskeleton. With the ability to move dynamically, using neurocontrol interfaces, these exoskeletons allow users to balance and walk without the crutches. Learn more in the latest IEEE Spectrum article! https://ieeexplore.ieee.org/document/8946313 #RoAMS #exoskeletons


Bipedal robots have long struggled to walk as humans do-balancing on two legs and moving with that almost-but-not-quite falling forward motion that most of us have mastered by the time we’re a year or two old. It’s taken decades of work, but robots are starting to get comfortable with walking, putting them in a position to help people in need.

He remarks that we are at Kittyhawk as far as life extension goes. Most folks, including the Wright brothers, did not see a widespread use for aircraft at the time. Today in life extension the scientists working on it really do know what they are chasing.


My mission is to drastically improve your life by helping you break bad habits, build and keep new healthy habits to make you the best version of yourself.

- Please consider donating: https://paypal.me/BrentNally or my Bitcoin Cash (BCH) address: qr9gcfv92pzwfwa5hj9sqk3ptcnr5jss2g78n7w6f2 or Patreon

Follow Brent on social media:

- Instagram: https://instagram.com/brent.nally/

Vlog “Posthumans” — Episode 22
Dr. Francesca Ferrando (NYU) interviews Dr. Aubrey de Grey, (SENS Research Foundation). Recorded at Princeton University (US), November 2019. Video-grapher and video-producer: Julian Boilen.

More info: http://www.theposthuman.org/vlog-posthumans.html

Welcome to the Posthuman Channel!
Please, follow these guidelines in order to join the conversation:
- Stay on-topic.
- Don’t spam.
- Be polite.
If you cannot follow these 3 simple guidelines, we kindly invite you to join the conversation somewhere else. Thanks.
Peace & Visions

It’s a model the company believes makes sense because the right answer for getting regulatory approval and delivering service in the United States or the Philippines or Indonesia will vary, Steckel said. “We’re going to be doing business with partners around the world,” Steckel said. “Our style is not confrontational. We’re using a different model. It’s a big world.”

OneWeb plans to offer its first customer demonstrations by the end of 2020 and provide full commercial global services in 2021.