The latest AI News. Learn about LLMs, Gen AI and get ready for the rollout of AGI. Wes Roth covers the latest happenings in the world of OpenAI, Google, Anthropic, NVIDIA and Open Source AI.
For decades, scientists have been trying to develop therapeutics for people living with Alzheimer’s disease, a progressive neurodegenerative disease that is characterized by cognitive decline. Given the global rise in cases, the stakes are high. A study published in The Lancet Public Health reports that the number of adults living with dementia worldwide is expected to nearly triple, to 153 million in 2050. Alzheimer’s disease is a dominant form of dementia, representing 60 to 70 percent of cases.
Recent approvals by the Food and Drug Administration have focused on medications that shrink the sticky brain deposits of a protein called amyloid beta. The errant growth of this protein is responsible for triggering an increase in tangled threads of another protein called tau and the development of Alzheimer’s disease — at least according to the dominant amyloid cascade hypothesis, which was first proposed in 1991.
Over the past few years, however, data and drugs associated with the hypothesis have been mired in various controversies relating to data integrity, regulatory approval, and drug safety. Nevertheless, the hypothesis still dominates research and drug development. According to Science, in fiscal year 2021 to 2022, the National Institutes of Health spent some $1.6 billion on projects that mention amyloids, about 50 percent of the agency’s overall Alzheimer’s funding. And a close look at the data for recently approved drugs suggests the hypothesis is not wrong, so much as incomplete.
A 25-year-old woman in China has had her Type 1 diabetes reversed through a groundbreaking new stem cell therapy treatment! As you can imagine, this represents a historic turning point in medical history. This revolutionary procedure has enabled her to create insulin on her own, relieving her of the constant daily hassle of injections. When this breakthrough eventually goes public, it will provide hope to millions worldwide dealing with this chronic condition.
According to Medlineplus, type 1 diabetes is classified as an autoimmune disorder in which the immune system erroneously attacks beta cells in the pancreas that produce insulin. Without insulin, your blood sugar levels can become dangerously elevated, leading to long-term damage to your vital organs. Managing this illness has generally required lifetime insulin therapy, which usually involves numerous daily injections or using insulin pumps. However, despite all of these measures, patients still face the risk of complications such as kidney damage, heart disease, and nerve issues.
This procedure involves extracting the patient’s adipose (fat) cells and reprogramming them into pluripotent stem cells. These adaptable cells have the amazing ability to develop into practically any kind of cell in the body. Scientists meticulously turned them into insulin-producing islet cells that resembled those damaged during the autoimmune onslaught. These new cells were then transplanted into the patient’s abdomen muscles and started to function as a biological insulin pump! The success of this technique is due to its individualized approach. The use of the patient’s own cells considerably reduces the likelihood of immune system rejection. Additionally, this circumvents the necessity for lifelong immunosuppressive medicines, typically prescribed for organ or cell transplants but present their own complications.
Three leading engineers discuss the impact of the AI revolution. Click here to subscribe to our channel 👉🏽 https://bbc.in/3VyyriMIntelligent machines are re…
The vast distances between stars make interstellar travel one of humanity’s most daunting challenges. Even the Voyager spacecrafts, now in interstellar space, would take tens of thousands of years to reach the nearest star, Alpha Centauri. To put this into perspective, Alpha Centauri is 277,000 astronomical units (AU) away—over 7,000 times the distance from Earth to Pluto. At current spacecraft speeds, a journey to our stellar neighbor would take an unimaginable 70,000 years. However, new ideas like the Sunbeam Mission offer a promising path forward, proposing innovative propulsion techniques that could shorten this timeline to mere decades.
The Sunbeam Mission centers around relativistic electron beam propulsion, where high-energy electron beams, accelerated close to the speed of light, push a spacecraft forward. This approach eliminates the need for onboard fuel, reducing the spacecraft’s mass and enabling greater acceleration. A stationary satellite, or statite, positioned near the Sun, would generate these electron beams by converting solar energy into electricity. Using materials and technologies like those developed for NASA’s Parker Solar Probe and European Space Agency’s Solar Orbiter, the statite could endure the Sun’s intense heat while directing the beam over vast distances. This could propel a spacecraft to 10% of the speed of light, allowing it to reach Alpha Centauri in about 40 years.
While the concept is ambitious, its challenges—like generating and maintaining the beam, energy conversion, spacecraft navigation, material durability, and beam focus—are not insurmountable. Current technologies, such as the Large Hadron Collider, high-temperature solar converters, and advanced heat-resistant materials, provide a foundation for overcoming these hurdles. Innovations in adaptive optics and laser communication systems also offer insights into managing beam precision over interstellar distances, demonstrating how existing advancements could be adapted for this revolutionary mission.
Why it’s awesome: These scavenger birds have an unexpected way of keeping predators away — by projectile vomiting stomach acid and semi-digested meat at their attackers.
Turkey vultures live in a range of habitats, including subtropical forests, shrublands and deserts. They have bald heads so that when they feast on carcasses, blood and guts don’t get trapped in their feathers.
I had a conversation with NVIDIA CEO Jensen Huang and we spoke about groundbreaking developments in physical AI and other big announcements made at CES. Jensen discusses how NVIDIA Cosmos and Omniverse are revolutionizing robot training, enabling machines to understand the physical world and learn in virtual environments — reducing training time from years to hours.
He shares insights on NVIDIA DRIVE AI’s autonomous vehicle developments, including their major partnership with Toyota, and talks about the critical role of safety in their three-computer system approach.
Jensen also shares what he considers to be the most impactful technology of our time! This conversation left me feeling excited for the future of technology and where we’re headed. I hope you enjoy it as much as I did.
Exploring the most important questions we face as we age.
Dr. Debra Whitman, Ph.D. is Executive Vice President and Chief Public Policy Officer, at AARP (https://www.aarp.org/) where she leads policy development, analysis and research, as well as global thought leadership supporting and advancing the interests of individuals age 50-plus and their families. She oversees AARP’s Public Policy Institute, AARP Research, Office of Policy Development and Integration, Thought Leadership, and AARP International.
Dr. Whitman is an authority on aging issues with extensive experience in national policy making, domestic and international research, and the political process. An economist, she is a strategic thinker whose career has been dedicated to solving problems affecting economic and health security, and other issues related to population aging.
Improving Global Resilience Against Emerging Infectious Threats — Dr. Nahid Bhadelia, MD — Founding Director, Center on Emerging Infectious Diseases (CEID), Boston University.
Dr. Nahid Bhadelia, MD, MALD is a board-certified infectious diseases physician who is the Founding Director of BU Center on Emerging Infectious Diseases (https://www.bu.edu/ceid/about-the-cen…) as well an Associate Professor at the BU School of Medicine. She served the Senior Policy Advisor for Global COVID-19 Response for the White House COVID-19 Response Team in 2022–2023, where she coordinated the interagency programs for global COVID-19 vaccine donations from the United States and was the policy lead for Project NextGen, $5B HHS program aimed at developing next generation vaccines and treatments for pandemic prone coronaviruses. She also served as the interim Testing Coordinator for the White House MPOX Response Team. She is the Director and co-founder of Biothreats Emergence, Analysis and Communications Network (BEACON), an open source outbreak surveillance program.
Between 2011–2021, Dr. Bhadelia helped develop and then served as the medical director of the Special Pathogens Unit (SPU) at Boston Medical Center, a medical unit designed to care for patients with highly communicable diseases, and a state designated Ebola Treatment Center. She was previously an associate director for BU’s maximum containment research program, the National Emerging Infectious Diseases Laboratories. She has provided direct patient care and been part of outbreak response and medical countermeasures research during multiple Ebola virus disease outbreaks in West and East Africa between 2014–2019. She was the clinical lead for a DoD-funded viral hemorrhagic fever clinical research unit in Uganda, entitled Joint Mobile Emerging Disease Intervention Clinical Capability (JMEDICC) program between 2017 and 2022. Currently, she is a co-director of Fogarty funded, BU-University of Liberia Emerging and Epidemic Viruses Research training program. She was a member of the World Health Organization(WHO)’s Technical Advisory Group on Universal Health and Preparedness Review (UHPR). She currently serves as a member of the National Academies Forum on Microbial Threats and previously served as the chair of the National Academies Workshop Committee for Potential Research Priorities to Inform Readiness and Response to Highly Pathogenic Avian Influenza A (H5N1) and member of the Ad Hoc Committee on Current State of Research, Development, and Stockpiling of Smallpox Medical Countermeasures.