Toggle light / dark theme

Scientists at the University of Bristol and the Technical University of Denmark have achieved quantum teleportation between two computer chips for the first time. The team managed to send information from one chip to another instantly without them being physically or electronically connected, in a feat that opens the door for quantum computers and quantum internet.

This kind of teleportation is made possible by a phenomenon called quantum entanglement, where two particles become so entwined with each other that they can “communicate” over long distances. Changing the properties of one particle will cause the other to instantly change too, no matter how much space separates the two of them. In essence, information is being teleported between them.

Hypothetically, there’s no limit to the distance over which quantum teleportation can operate – and that raises some strange implications that puzzled even Einstein himself. Our current understanding of physics says that nothing can travel faster than the speed of light, and yet, with quantum teleportation, information appears to break that speed limit. Einstein dubbed it “spooky action at a distance.”

Talk with an Alzheimer’s researcher and you’ll likely hear the same lament: Finding a treatment or cure is incredibly challenging because scientists are not even certain what exactly causes the neurological disease in the first place.

In fact, researchers speak of a “web of causation” that can lead to Alzheimer’s. In addition to genetics, scientists look to so-called lifestyle elements such as blood pressure and blood sugar levels. Even the bacteria that live in our mouths are being scrutinized for their potential role in Alzheimer’s.

One element that researchers are completely certain about is that people who carry the apolipoprotein E4 gene — known as APOE4 — are at a greater risk of developing Alzheimer’s.

And a means coming for 24 hour power supply.


First announced in 2012 and with a scheduled completion date of 2030, the 5,000-megawatt solar park will take three times as long to finish as the Burj Khalifa. Phases one and two, which are already complete, comprised 2.3 million photovoltaic panels with a capacity of 213 megawatts. Phase three, deep in construction, adds over 3 million photovoltaics and another 800 megawatts, and will be completed in 2020, say DEWA.

This 45-ton dump truck ascends a 13-percent grade and can take on 65 tons while doing so.

As the heavy transport descends with more than double the weight, the trucks regenerative braking system recaptures all the energy it will need to refill the charge that it will need to use on the way back up again. Regenerative braking allows the eDumper to produce more energy downhill than it consumes uphill.”


The eDumper is the world’s largest electric vehicle but it generates more energy than it uses so it never needs charging.

This Guidebook provides comprehensive how-to information to build Startup Societies. These are small areas that innovate in governance, such as Shenzhen, Dubai, and Singapore.

The Authors wrote this Guidebook to radically lower barriers for launching Startup Society ventures. This Guidebook covers twenty steps to create a Startup Society from ideation to running a full-scale city. It also introduces unique best practices for making Startup Societies: creating consortiums, launching competitions, sharing upsides with local communities, leading with a gift, and scaling from small locations to larger ones.

The Guidebook backs up its guidelines with fifty years of research and field work in over fifty countries. It is a great starting point for entrepreneurs who want to use policies to rejuvenate rural and urban neighborhoods around the world, or to create new ones. It is for everyone with a game-changing Startup Society idea and the drive to achieve it, in their local communities or elsewhere.

A European team of researchers including physicists from the University of Konstanz has found a way of transporting electrons at times below the femtosecond range by manipulating them with light. This could have major implications for the future of data processing and computing.

Contemporary electronic components, which are traditionally based on silicon semiconductor technology, can be switched on or off within picoseconds (i.e. 10-12 seconds). Standard mobile phones and computers work at maximum frequencies of several gigahertz (1 GHz = 109 Hz) while individual transistors can approach one terahertz (1 THz = 1012 Hz). Further increasing the speed at which electronic switching devices can be opened or closed using the standard technology has since proven a challenge. A recent series of experiments – conducted at the University of Konstanz and reported in a recent publication in Nature Physics – demonstrates that electrons can be induced to move at sub-femtosecond speeds, i.e. faster than 10-15 seconds, by manipulating them with tailored light waves.

“This may well be the distant future of electronics,” says Alfred Leitenstorfer, Professor of Ultrafast Phenomena and Photonics at the University of Konstanz (Germany) and co-author of the study. “Our experiments with single-cycle light pulses have taken us well into the attosecond range of electron transport”. Light oscillates at frequencies at least a thousand times higher than those achieved by purely electronic circuits: One femtosecond corresponds to 10-15 seconds, which is the millionth part of a billionth of a second. Leitenstorfer and his team from the Department of Physics and the Center for Applied Photonics (CAP) at the University of Konstanz believe that the future of electronics lies in integrated plasmonic and optoelectronic devices that operate in the single-electron regime at optical – rather than microwave – frequencies. “However, this is very basic research we are talking about here and may take decades to implement,” he cautions.

The Federal Aviation Administration put forward a rule Thursday that would empower the government to track most drones in the U.S.

The rule will require drones to implement a remote ID system, which will make it possible for third parties to track them. The measure will help law enforcement identify unauthorized drones that may pose a security threat, paving the way for wider adoption of commercial drone technology.

The rule said that the FAA expects all eligible drones in the U.S. to comply with the rule within three years.

A method for accelerating particles, called wakefield acceleration, has notched up its output energy, bringing it closer to its goal of shrinking the size of accelerator facilities.

The field of plasma wakefield acceleration is picking up speed. This method, which was first proposed in 1979 [1], creates a collective motion of plasma particles, generating an accelerating field in its wake. The amplitude of this accelerating field is not limited, as it is in conventional acceleration techniques that use radio frequency pulses. The implication is that wakefield acceleration has the potential to work over much smaller lengths, which would allow a reduction in the size (and cost) of accelerator facilities. There exist different methods for generating wakefields, and now researchers are reporting significant progress for two of these techniques. One method using laser-driven wakefields has generated 8-GeV electrons, a new energy record that doubles the previous record [2].