Toggle light / dark theme

We are cousins of bats lol.


Dr David Haussler, Howard Hughes Medical Institute investigator working at University of California, Santa Cruz, co-authors report on computer analysis designed to reconstruct genome of 80-million-year-old mammal; holds that program has 98.5 percent accuracy rate and over next four years will formulate entire genome of ancestral mammal from total of 37 current mammalian species, including humans; research is published in journal Genome Research; graph (M)

Discussion with A biologist answering about Covid in quite a lot of detail.

World Economic Forum


As of 23 March, there were 336,000 confirmed cases of COVID-19 in the world, with more than 250,000 cases outside China. Despite these numbers, much is still misunderstood or unknown about the virus which has brought regions of the globe to a standstill and placed huge pressure on the global economy.

Even what we do know – that elderly people are more at risk, that this is a new virus but resembles other known epidemics, that it is highly infectious – requires more explanation.

Fyodor R…


Abstract Immunity is the state of protection against infectious disease conferred either through an immune response generated by immunization or previous infection or by other non-immunological factors. This article reviews active and passive immunity and the differences between them: it also describes the four different commercially available vaccine types (live attenuated, killed/inactivated, subunit and toxoid): it also looks at how these different vaccines generate an adaptive immune response.

This is possibly part of the reasons there flocks of giant locusts ravaging Africa. Rainy periods of time like the March Rain may serve to catalyse their reproduction and they appear right when its time to harvest crops June and July, when farmers are just starting to harvest.

(Kenya, Somalia, and southern Ethiopia have the right conditions with the possibility of migrations to Uganda and South Sudan.)

Every few years, natural swings in the ocean can lead to such a warming, drastically altering weather on land—and setting the stage for flooding rains in East Africa. But at the same time, a second ocean shift was brewing. An unusually cold pool of water threatened to park itself south of Madagascar, leading to equally extreme, but opposite, weather farther south on the continent: drought.


Researchers have harnessed climate patterns to forecast famines months in advance.

Scientists have studied this ebb and flow for centuries, but only began understanding its effects on our planet at the dawn of the space age in the mid-20th century. Now it is clear that around solar maximum the sun is more likely to bombard Earth with charged particles that damage satellites and power grids. The solar cycle also plays a minor role in climate, as variations in irradiance can cause slight changes in average sea-surface temperatures and precipitation patterns. Thus, a better understanding of the cycle’s physical drivers is important for sustainable living on Earth.

Yet scientists still lack a model that perfectly predicts the cycle’s key details, such as the exact duration and strength of each phase. “I think the solar cycle is so stable and clear that there is something fundamental that we are missing,” says Ofer Cohen, a solar physicist at the University of Massachusetts Lowell. One obstacle to figuring it out, he says, is that crucial details of the apparent mechanisms behind the cycle—such as the sun’s magnetic field—are largely hidden from our view. But that might be about to change.

Tim Linden, an astronomer at The Ohio State University, and his colleagues recently mapped how the sun’s high-energy glow dances across its face over time. They found a potential link between these high-energy emissions, the sun’s fluctuating magnetic field and the timing of the solar cycle. This, many experts argue, could open a new window into the inner workings of our nearest, most familiar star.

Researchers have discovered a new Earth-sized planet orbiting a star outside our solar system. The planet, called Kepler-1649c, is only around 1.06 times larger than Earth, making it very similar to our own planet in terms of physical dimensions. It’s also quite close to its star, orbiting at a distance that means it gets around 75% of the light we do from the Sun.

The planet’s star is a red dwarf, which is more prone to the kind of flares that might make it difficult for life to have evolved on its rocky satellite’s surface, unlike here in our own neighborhood. It orbits so closely to its star, too, that one year is just 19.5 of our days — but the star puts out significantly less heat than the Sun, so that’s actually right in the proper region to allow for the presence of liquid water.

Kepler-1649c was found by scientists digging into existing observations gathered by the Kepler space telescope before its retirement from operational status in 2018. An algorithm that was developed to go through the troves of data collected by the telescope and identify potential planets for further study failed to properly ID this one, but researchers noticed it when reviewing the information.