Toggle light / dark theme

Few recognize the vast implications of materials science.

To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.

That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.

Memory is the natural extension of attention and learning. The act of memory facilitates the formation, activation, and retention of circuits that contribute to the brain’s optimal functioning. Dr. Restak explains how we are the sum total of the memory we retain. Without memory, we wouldn’t know who we are.


The hippocampus, a portion of the brain located in the temporal lobe of each cerebral cortex, is the entry portal for information to be remembered. If the hippocampus is damaged, we have difficulty forming new memories.

This was demonstrated by Patient H. M., whose real name was Henry Molaison. He started having seizures when he was 10 years old. By age 20, he was completely incapacitated.

Since he could be felled with one of the sudden seizures at any time, he couldn’t work or form relationships, and lived at home with his mother. At age 27, in 1953, he underwent a new type of operation.

Circa 2018


E-noses come in a variety of architectures, but most rely exclusively on chemical sensors, such as metal oxides or conducting polymers. The TruffleBot goes a step further: A 3.5-inch-by-2-inch circuit board that sits atop a Raspberry Pi contains eight pairs of sensors in four rows of two. Each sensor pair includes a chemical sensor to detect vapors and a mechanical sensor (a digital barometer) to measure air pressure and temperature.

Then comes the sniffing bit: Odor samples are pushed across these sensors by small air pumps that can be programmed to take up puffs of air in a pattern. “When animals want to smell something, they don’t just passively expose themselves to the chemical. They’re actively sniffing for it—sampling the air and moving around—so the signals that are being received are not static,” says Rosenstein.

In an analysis of nine odors, including those from cider vinegar, lime juice, beer, wine, and vodka (and using ambient air as a control), the team found that chemical sensors alone accurately identified an odor about 80 percent of the time. The addition of sniffing improved accuracy to 90 percent. Throw in the pressure and temperature readings and the e-nose recognized an odor 95 percent of the time.

A new weapon in the arsenal against the coronavirus may be sitting in your home entertainment console. A team led by physicist Chris Barty of the University of California, Irvine is researching the use of diodes from Blu-ray digital video disc devices as deep-ultraviolet laser photon sources to rapidly disinfect surfaces and the indoor air that swirls around us.

Barty, UC Irvine distinguished professor of physics & astronomy, said that such UV light sterilizers would be cheap compared to current medical- and scientific-grade systems and that it’d be possible to deploy them almost anywhere.

“If these sources are successful, I think you could build them into a mask and clean the air that’s coming in and out of you,” he said. “Or you could set these things up in the air circulation ducts of major buildings, and the airflow that goes through could be sterilized.”

More than 100 teams around the world are racing to develop a coronavirus vaccine. Dr. Ofer Levy and a group of Harvard Medical School researchers are among them, but the vaccine they’re working on is a little different. It’s specifically designed for those most vulnerable to the disease: the elderly.

“Most vaccines are developed with a one-size-fits-all concept,” Levy told Business Insider. “Academic centers and companies typically develop a vaccine assuming that you will respond to the vaccine the same way, whether you’re a man or a woman, whether you’re young or elderly, whether you live in the US or Africa, whether you give the vaccine in the summer or winter, whether you give it in the morning or the evening.”


Vaccines generally aren’t as effective for the elderly. A Harvard lab is working on a COVID-19 vaccine that would be most effective for them.

Henry Ford’s Model T was famously made partly from hemp bioplastic and powered by hemp biofuel. Now, with battery-powered vehicles starting to replace those that use combustion engines, it has been found that hemp batteries perform eight times better than lithium-ion. Is there anything that this criminally-underused plant can’t do?

The comparison has only been proven on a very small scale. (You weren’t expecting a Silicon Valley conglomerate to do something genuinely groundbreaking were you? They mainly just commercialise stuff that’s been invented or at least funded by the state.) But the results are extremely promising.