Menu

Blog

Page 7369

Jun 5, 2020

Self-assembling, biomimetic composites possess unusual electrical properties

Posted by in categories: engineering, nanotechnology

Sometimes, breaking rules is not a bad thing. Especially when the rules are apparent laws of nature that apply in bulk material, but other forces appear in the nanoscale.

“Nature knows how to go from the small, to larger scales,” said Melik Demirel, professor of engineering science and mechanics and holder of the Lloyd and Dorothy Foehr Huck Chair in Biomimetic Materials. “Engineers have used mixing rules to enhance properties, but have been limited to a single scale. We’ve never gone down to the next level of hierarchical engineering. The key challenge is that there are apparent forces at different scales from molecules to bulk.”

Composites, by definition, are composed of more than one component. Mixture rules say that, while the ratios of one component to another can vary, there is a limit on the physical properties of the composite. According to Demirel, his team has broken that limit, at least on the nanoscale.

Jun 5, 2020

Scientists Have Found a Way to Shuffle Atoms to Dramatically Improve Drugs’ Effectiveness and Safety

Posted by in category: biotech/medical

Scientists have found a new method to strategically add deuterium to benzene, an aromatic compound commonly found in crude oil. When applied to the active ingredient of drugs to incorporate deuterium, it could dramatically improve the drugs’ efficacy and safety and even introduce new medicines.

To validate the method, which was published in Nature, a team led by W. Dean Harman of the University of Virginia worked with Xiaoping Wang at the Oak Ridge National Laboratory’s Spallation Neutron Source. Wang successfully verified the exact position of deuterium atoms that resulted from the selective deuteration of benzene molecules using single crystal neutron diffraction.

“Because the high sensitivity of neutrons to hydrogen and its deuterium isotope, we were able to quantitatively assign not only the positions of the deuterium atoms at the atomic level, but also determine precisely how many were added on each side of the benzene molecule,” Wang said. “This is important in designing new therapeutic drugs.”

Jun 5, 2020

IoT, AI and blockchain will change every aspect of enterprises and our lives: Oracle

Posted by in categories: bitcoin, business, economics, health, internet, robotics/AI

The current health crisis has snowballed into a world economic crisis, where every old business norm has been challenged. In such times, we cannot fall back on old ways of doing our business. Today, three technologies

Internet of Things(IoT), Artificial Intelligence (AI), and blockchain are poised to change every aspect of enterprises and our lives. Now more than ever, organisations realise the pertinent need for a robust digital foundation for their businesses as their future plans have been disrupted. “To achieve that level of business sophistication holistically it is imperative that there is a seamless flow of data across all the functions of an enterprise. That requires connected data that is secure and one that is driven by connected intelligence,” Guruprasad Gaonkar, JAPAC SaaS Leader for ERP & Digital Supply Chain, Oracle told Moneycontrol in an interview:

How is India reacting to emerging technologies as compared to other Asia Pacific (APAC) regions?

Jun 5, 2020

New Simulations Show How Black Holes Grow, Through Mergers and Accretion

Posted by in category: cosmology

One of the most pressing questions in astronomy concerns black holes. We know that massive stars that explode as supernovae can leave stellar mass black holes as remnants. And astrophysicists understand that process. But what about the supermassive black holes (SMBHs) like Sagittarius A-star (Sgr A*,) at the heart of the Milky Way?

SMBHs can have a billion solar masses. How do they get so big?

A group of scientists at the Harvard Center for Astrophysics are trying to shed some light on that question. They’ve created a simulation as part of the Black Hole Initiative (BHI), an interdisciplinary effort at Harvard to advance the understanding of black holes.

Jun 5, 2020

Parents Have More Synchronised Patterns Of Brain Activity When They’re Together

Posted by in category: neuroscience

By Emily Reynolds. Couples who listened to sounds together showed more similar activity in brain areas involved in attention than those who were apart.

Jun 5, 2020

Robots And Social Distancing Will Revolutionize Restaurants In Post-COVID World

Posted by in category: robotics/AI

Eateries will never be the same.

Jun 5, 2020

Taiwan Draws Up Plan to Woo $1.3 Billion of Annual Tech Research

Posted by in categories: computing, government, internet, mobile phones

The endeavor escalates global competition for much-sought-after semiconductor technology and is intended to build on the island’s technology industry, led by major players such as key Apple Inc. suppliers Taiwan Semiconductor Manufacturing Co. and Hon Hai Precision Industry Co. Taiwan has been caught in the middle of a clash between the U.S. and China over the development of chip technology that powers everything from smartphones to 5G base stations.


Taiwan is dangling incentives to attract more than NT$40 billion ($1.3 billion) of annual investments in research and technology, creating a seven-year blueprint to safeguard the island’s lead in semiconductors and other cutting-edge fields.

As part of the initiative, the cabinet plans to allocate more than NT$10 billion to entice foreign chipmakers to set up R&D facilities locally, confirming an earlier Bloomberg News report. The government said Thursday it aims to subsidize as much as half of all research and development costs incurred by global chip companies that build centers on the island.

Continue reading “Taiwan Draws Up Plan to Woo $1.3 Billion of Annual Tech Research” »

Jun 5, 2020

Eat less and live a long healthy life? Study shows ‘not in all cases’

Posted by in categories: biotech/medical, genetics, life extension

An underlying assumption of research on aging holds that dietary restriction (and drugs that mimic its effects) will slow aging to extend both lifespan and healthspan jointly. While eating a Spartan diet has been shown to robustly extend lifespan and delay age-related diseases in many species, a genome-wide analysis of 160 genetically distinct strains of the fruit fly D. melanogaster shows that lifespan and healthspan are not linked under dietary restriction. Results are published in Current Biology.

Though on was extended and healthspan was increased, researchers from the Kapahi lab at the Buck Institute say the devil is in the details. In the study researchers measured nutrient-dependent changes in lifespan and tracked age-related changes in to measure healthspan. While 97 percent of strains showed some lifespan or healthspan extension in response to , only 50 percent of strains showed a significantly positive response to dietary restriction for both. Thirteen percent of the strains were more vigorous, yet died sooner with dietary restriction; 5 percent lived longer, but spent more time in poor health. The remaining 32 percent of the strains showed no benefits or detriments to lifespan or healthspan, or to both.

“Dietary restriction works, but may not be the panacea for those wanting to extend healthspan, delay age-related diseases, and extend lifespan,” said Pankaj Kapahi, Ph.D., Buck professor and senior author on the paper. “Our study is surprising and gives a glimpse into what’s likely going to happen in humans, because we’re all different and will likely respond differently to the effects of dietary restriction. Furthermore, our results question the idea that lifespan extension will always be accompanied by improvement of healthspan.”

Jun 4, 2020

Certain personality traits may affect risk of ‘pre-dementia’

Posted by in category: neuroscience

Summary: Certain personality traits could increase the risk of developing mild cognitive impairment, a new study reports. Openness was associated with a 6% reduced risk of developing a pre-dementia condition, while those who scored higher for neuroticism had a 6% increased risk of MCI.

Source: Wiley

A study published in the Journal of the American Geriatrics Society examined five personality traits–neuroticism, extraversion, conscientiousness, agreeableness, and openness–and their links to pre-dementia conditions called motoric cognitive risk (MCR) and mild cognitive impairment (MCI) syndromes.

Jun 4, 2020

Arrays of strontium Rydberg atoms show promise for use in quantum computers

Posted by in categories: computing, particle physics, quantum physics

A team of researchers at California Institute of Technology has found that arrays of strontium Rydberg atoms show promise for use in a quantum computer. In their paper published in the journal Nature Physics, the researchers describe their study of quantum entangled alkaline-earth Rydberg atoms arranged in arrays and what they learned about them. In the same issue, Wenhui Li, with the National University of Singapore, has published a News & Views piece exploring the state of quantum computing research, and outlines the work done by the team at CIT.

Quantum computers capable of conducting real computing work have still not been realized, but work continues as scientists are confident that the goal will be reached. And as Li notes, most of the early-stage demo quantum computers are based on or trapped ion platforms, though other systems are being studied, as well. One such system is based on in which the charges of the protons and electrons balance. In this new effort, the researchers looked at a type of neutral atom system based on Rydberg (excited atoms with one or more electrons that also have a high quantum number). To use such atoms in a quantum computer, they must, of course, be entangled—and there needs to be a lot of them, generally arranged in an array.

In their work, the team at CIT developed a way to demonstrate entanglement of Rydberg atoms in arrays—and as part of the system, they were able to detect and control Rydberg qubits with unprecedented fidelities. To achieve this feat, they began with realizing photon coupling between different levels of Rydberg ground-state qubits, thus avoiding scattering. Doing so also allowed for efficient detection of Rydberg states, greatly improving detection fidelity. The researchers also demonstrated two-qubit entanglement using tweezer potentials, also with .