Toggle light / dark theme

In this edition of Future Discussions Ugochukwu discusses with the Head of TAFFD’s Africa on the vision and strategies for creating opportunities for education, technology and empowerment in Africa using the global channel that TAFFDs Africa is creating.

Brenda talks about why she joined TAFFD’s Inc and the amazing work she and her team has been doing to foster the progress of Africa. She equally talks about the 4th Industrial Revolution, what is means for Africa and the work TAFFD’s Africa is doing to prepare young Africans to leverage the opportunities therein.

Subscribe for new episodes.

#futuredisccussions #ugochukwuchukwu #TAFFDs #TAFFDsAFrica

The Moon and Mars are remote and forbidding but it’s fairly easy to turn their soil into construction material and mine it for water to drink and oxygen to breathe.


Several astronauts have spent more than a year in zero gravity, and they experienced muscle loss, brittle bones and difficulties with vision. A space station could be spun up to ameliorate these problems, and for colonists on the Moon and Mars, gravity would be reduced, not absent. Their capillaries and cardiovascular systems would adjust, and muscle mass would be shed.

Few of us would relish living in the isolation and close confines of a bubble habitat far from home. The lack of a varied natural environment is likely to lead to weaker immune systems. However, the colonists will innovate in the activities of exercise and sex. Their space suits will be made from materials that are supple, supportive and skin-tight, and we might envy their ability to effortlessly leap and cavort across the surfaces of their new worlds.

Looking back over years of research into the topic of hybrid systems based on different combinations of solar, wind, hydro and other renewables, an international group of scientists found strong potential for strategies to exploit complementarity between the different sources integrate more intermittent renewables onto regional and national grids. The scientists present a series of conclusions and recommendations that aim to push research in hybrid renewables forward.

Researchers from the Max Planck Society assessed humans’ capabilities for controlling killer AI. Read the details.


Researchers from Osaka University propose a concept for next-generation ultra-intense lasers, possibly increasing the current record from 10 Petawatts to 500 Petawatts.

Ultra-intense lasers with ultra-short pulses and ultra-high energies are powerful tools for exploring unknowns in physics, cosmology, material science, etc. With the help of the famous technology “Chirped Pulse Amplification (CPA)” (2018 Nobel Prize in Physics), the current record has reached 10 Petawatts (or 1016 Watts). In a study recently published in Scientific Reports, researchers from Osaka University proposed a concept for next-generation ultra-intense lasers with a simulated peak power up to the Exawatt class (1 Exawatt equals 1000 Petawatts).

The laser, which was invented by Dr. T. H. Maiman in 1960, has one important characteristic of high intensity (or high peak power for pulse lasers): historically, laser peak power has experienced two-stage development. Just after the birth of the laser, Q-switching and mode-locking technologies increased laser peak power to Kilowatt (103 Watt) and Gigawatt (109 Watt) levels. After CPA technology was invented by Gérard Mourou and Donna Strickland in 1985, by which material damage and optical nonlinearity were avoided, laser peak power was dramatically increased to Terawatt (1012 Watt) and Petawatt (1015 Watt) levels. Today, two 10-Petawatt CPA lasers have been demonstrated in Europe (ELI-NP laser) and China (SULF laser), respectively.