Toggle light / dark theme

This year-old zdnet article notes that the company plans a photo-sensitivi ty range from ultraviolet through visible light to 2000nm infrared. The sensor itself retains almost 4x the light of ordinary CMOS sensors, while being 2000x more sensitive to light. This will put it on par with the best analogue image intensification tubes used for night vision. Up until now, there have not been any digital night vision systems that can match analogue systems. This will be better, with higher resolution and multichromatic. It also has a 100x greater dynamic range than ordinary CMOS sensors, according to the specifications from SeeDevice’s site linked below. (This means that it can image both bright and dark areas clearly and simultaneously, instead of having the bright areas washing out the image, or the dark areas being black. The included photo is from its website, demonstrating a wide dynamic range photo produced by the system. On a normal photo, either the sky would appear black, or the road would be so bright that it would look washed out.)

Hopefully coming soon to a cell phone camera near you…

SeeDevice’s site: https://www.seedeviceinc.com/technology

TerraPower’s ability to achieve those goals will be in no small part due to the money and influence of the company’s founder.

“The most important factor is that Bill Gates is behind this,” principal research scientist at the Massachusetts Institute of Technology department of nuclear science and engineering Charles Forsberg tells CNBC Make It. “The most important factors in developing a new reactor are money and very competent people. Bill Gates brings both to the project.”

Here’s how TerraPower is building advanced nuclear power plants.

**Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.**

Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.

One problem with such exoskeletons: They often depend on manual controls to switch from one mode of locomotion to another, such as from sitting to standing, or standing to walking, or walking on the ground to walking up or down stairs. Relying on joysticks or smartphone apps every time you want to switch the way you want to move can prove awkward and mentally taxing, says Brokoslaw Laschowski, a robotics researcher at the University of Waterloo in Canada.


Circa 2020 o.o


The NASA Perseverance Rover has a device aboard called MOXIE that will convert the air available on Mars into oxygen. The device is a test, and if the technology was used on a larger scale could produce oxygen for humans to breathe on the Red Planet and could be used for rocket fuel. NASA knows that one of the most challenging parts of putting people on Mars will be getting them off the planet and back to Earth.

Two get a crew for off Mars would require 55000 pounds of oxygen to produce thrust from 15000 pounds rocket fuel. Rather than send all of the oxygen needed from Earth to Mars, scientists want to enable the astronauts to create the rocket fuel on Mars. MOXIE is a first-generation oxygen generator meant to test technology that could create the required oxygen.

The more data collected, the better the results.


Understanding the genetics of complex diseases, especially those related to the genetic differences among ethnic groups, is essentially a big data problem. And researchers need more data.

1000, 000 genomes

To address the need for more data, the National Institutes of Health has started a program called All of Us. The project aims to collect genetic information, medical records and health habits from surveys and wearables of more than a million people in the U.S. over the course of 10 years. It also has a goal of gathering more data from underrepresented minority groups to facilitate the study of health disparities. The All of Us project opened to public enrollment in 2018, and more than 270000 people have contributed samples since. The project is continuing to recruit participants from all 50 states. Participating in this effort are many academic laboratories and private companies.

Papers referenced in the video:

Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7765667/

Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration?
https://pubmed.ncbi.nlm.nih.gov/27444382/

Is ergothioneine a ‘longevity vitamin’ limited in the American diet?

The bill awaits Gov. Jay Inslee’s signature.


Washington state lawmakers have passed a measure that would phase out the sale of gas-powered vehicles starting in 2030. The Clean Cars 2030 initiative passed Thursday as an amendment to a bill that requires state utilities prepare for an electric-vehicle future. The bill now awaits Gov. Jay Inslee’s signature.

That’s five years earlier than planned gas vehicle bans in California and Massachusetts, and the first ban on gas cars passed by legislators, rather than by an executive order. The bill passed Washington’s Senate by a vote of 25–23 and a vote of 54–43 in the House. The bill bans the sale, purchase, or registration of non-EVs from model year 2030 and later, and would include vehicles bought in another state and brought into Washington state.

The Clean Cars 2030 measure depends on the state approving a tax on vehicle miles traveled, which would help pay for new transportation infrastructure in the state, according to the bill.