Toggle light / dark theme

Google runs a plethora of aspirational projects to explore one moonshot or another, but only some become real products. The company’s Project Loon internet balloons didn’t make the cut, having shut down in early 2021. However, one aspect of Loon has lived on to become its own Googley project. Google says it has used the Free Space Optical Communications (FSOC) links developed for Project Loon to beam hundreds of terabytes of data nearly five kilometers, no wires necessary.

Now under the purview of the company’s X labs, the little-known Project Taara is already enhancing connectivity in Kenya and India. Google says FSOC is essentially a fiber optic connection (up to 20 Gbps) without the wires, but it requires a direct line of sight. In Africa, Taara is now beaming data across the Congo River from Brazzaville in the Republic of Congo and Kinshasa in the Democratic Republic of Congo. After setting up the links over the past few years, Google is now sharing some of the project’s more impressive metrics.

Project Taara lead Baris Erkmen notes that Project Taara transmitted 700 TB over a recent 20-day period. This helped to back up wired connections in use by Google’s local partner Econet. Testing Taara in Africa makes sense because line-of-sight laser communication falls apart in a foggy locale like Google’s Bay Area home, and the fast-flowing Congo River has made connectivity in the region much more expensive.

The SpaceX capsule is much higher and will spend substantially more time in space than that of its rivals, Jeff Bezos-owned Blue Origin or Sir Richard Branson-owned Virgin Galactic.

Those two companies have yet to reach orbit and have only launched passengers barely across the official US-recognized border of space.

When Bezos traveled to space on his company’s flight, one of his fellow passengers, 82-year-old Wally Funk, gave a lukewarm review of the trip.

University of California-Riverside (UCR) researchers say they are studying whether they can turn edible plants like lettuce into mRNA vaccine factories.

One of the challenges with this new technology is that it must be kept cold to maintain stability during transport and storage. If this new project is successful, plant-based mRNA vaccines, which can be eaten, could overcome this challenge with the ability to be stored at room temperature.

The project’s goals, made possible by a $500,000 grant from the National Science Foundation, are threefold: showing that DNA containing the mRNA vaccines can be successfully delivered into the part of plant cells where it will replicate, demonstrating the plants can produce enough mRNA to rival a traditional shot, and finally, determining the right dosage.

Prof. Chuanfeng Li and Prof. Zongquan Zhou from University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) innovatively raised and realized noiseless photon echo (NLPE) protocol. The research of entire originality reduced the noise by 670 times compared with previous strategies and achieved solid quantum memory with high fidelity. The results were published in Nature Communications.

First observed by Erwin Hahn in 1,950 photon echo is a fundamental physical interaction between light and matter as well as an essential tool for the manipulation of electromagnetic fields. However, the intense spontaneous noise emission generated has the same frequency as the signal, it is impossible to separate them in principle. Previous protocols, such as atomic frequency comb and the revival of silenced echo, failed to eliminate the spontaneous noise emission as much as needed.

In this study, the researchers implemented NLPE protocol in Eu3+:Y2SiO5 crystal to serve as an optical quantum memory and applied a four-level aromic system to suppress the noise.

Summary: Researchers identified specific receptors for acetylcholine that reroute information flow through memory circuits in the hippocampus. The findings could have implications for the development of drugs to help enhance or protect memory from diseases associated with cognitive decline.

Source: University of Bristol.

Bristol-led research has identified specific drug targets within the neural circuits that encode memories, paving the way for significant advances in the treatment of a broad spectrum of brain disorders.

Progress.


Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.

The label on RecA together with fluorescent markers on the DNA allows the researchers to follow every step of the process accurately; for example, they conclude that the whole repair is finished in 15 minutes, on average, and that the template is located in about nine. Using microscopy, Elf and his team investigate the fate of the break site and its homologous copy in real-time. They also find that the cell responds by rearranging RecA to form thin filaments that span the length of the cell.


How the cell can mend broken DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Civilian Space Development has kicked-off: the work begins now!

Newsletter 17.09.2021 by Bernard Foing & Adriano V. Autino

During the last months we have seen the first civilian passengers fly to space, onboard Blue Origin and Virgin Galactic vehicles. September 15th, four civilian astronauts, onboard a Space X Dragon capsule, passed the 500 km orbit, more than 100 km higher than the ISS.In 2016 we started to publicly talk about and promote Civilian Space Development, while the whole space community kept on talking only about space exploration. Earlier, in 2,008 we founded the Space Renaissance movement, and a couple of years later the Space Renaissance International, as a philosophical association targeted to complete the Kopernican Revolution, supporting the Civilization expansion into space. Nowadays the concept of civilian space flight is everywhere on the media, and many people in the space community talk about a space renaissance. Of course the Coronavirus pandemics accelerated the awareness of the urgency to expand humanity into outer space. And space tourism — the first stage of civilian space settlement — is now a reality, in its first steps.

Of course nobody could be more happy than ourselves, for the above development, and of course**2 we want to congratulate with Elon, Richard and Jeff, for such a great achievement!

So, may we consider that our mission has been completed? Let’s see.

Firstly, were those crews composed by regular travelers, like normal air-flight passengers? Not exactly. The Inspiration4 crew members received astronaut training, for many months, including lessons in orbital mechanics, operating in a microgravity, stress testing, emergency preparedness training, and mission simulations. They have studied over 90 different kinds of training guides and manuals and lessons to learn to fly Crew Dragon, and what to do under emergency situations. The legal aspects are not clear: did FAA quickly authorize Space X and Blue Origin to deal commercial space flights? Doubt is more than legitimate, considering the long procedure followed by Virgin Galactic to be authorized to transport paying passengers in space. Likely, these first “civilian” passengers — like the first orbital tourist Dennis Tito did in 2001 — accepted conditions similar to the military astronauts (i.e. zero rights and warrants).