Toggle light / dark theme

đŸ‘ïžđŸ” Scientists have developed a transparent camera using see-through technology, paving the way for hidden eye tracking devices in everyday objects. #InvisibleInnovation


The problem is that placing a camera in front of the eyes tends to block the view. And mounting them further away makes them less accurate, more bulky and often more power hungry because of the extra data processing they require. This has limited their utility in many situations.

What eye trackers need is a way of hiding light sensitive pixels in plain sight.

Enter Gabriel Mercier at The Barcelona Institute of Science and Technology in Spain and colleagues who have built transparent photodetectors that can make cameras more or less invisible. They have tested their device and shown it could enable a new generation of eye tracking devices built into ordinary objects such as spectacle lenses, computer monitors and windows. “The operation and appearance of transparent image sensors present a fundamental shift in how we think about cameras and imaging, as these devices can be concealed in plain sight,” they say.

WASHINGTON — Lockheed Martin Corp announced Oct. 30 it has completed the acquisition of small satellite manufacturer Terran Orbital. The approximately $450 million acquisition deal deepens Lockheed Martin’s foothold in the commercial satellite sector and culminates a partnership that began in 2017.

The acquisition positions Lockheed to leverage Terran’s expertise in low-cost satellite production for both military and commercial ventures. Lockheed Martin stressed that Terran Orbital, now rebranded as “Terran Orbital, a Lockheed Martin Company,” will continue to operate as a merchant supplier for the broader space industry.

The completed acquisition caps Lockheed Martin’s years-long relationship with Terran Orbital, formerly Tyvak Nano-Satellite Systems. The smallsat specialist, founded in 2011, initially focused on nanosatellites and cubesats, but transitioned to building larger satellite platforms after it rebranded in 2022. That shift in focus followed Terran Orbital’s public listing through a special purpose acquisition company (SPAC) merger, which aimed to accelerate its commercial growth.

Researchers have developed a cutting-edge optical computing system that represents a major leap in the field of optical logic.

Traditionally, optical logic computing—using light to perform logical operations—has faced challenges when trying to handle more than four inputs due to limitations in



Researchers have long sought to harness the power of light for computing, aiming to achieve higher speeds and lower energy consumption compared to traditional electronic systems. Optical computing, which uses light instead of electricity to perform calculations, promises significant advantages, including high parallelism and efficiency. However, implementing complex logic operations optically has been a challenge, limiting the practical applications of optical computing.

A recent breakthrough by researchers at Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics has pushed the boundaries of optical computing. As reported in Advanced Photonics, they developed a large-scale optical programmable array (PLA) capable of handling more complex computations. This new optical PLA uses parallel spectrum modulation to achieve an 8-input system, significantly expanding the capabilities of optical logic operations.

Today, more than a quarter of all new code at Google is generated by AI, then reviewed and accepted by engineers.


More than a quarter of Google’s new code is being generated by artificial intelligence (AI), CEO Sundar Pichai revealed during Tuesday’s third-quarter earnings call for the leading tech company.

We’re also using AI internally to improve our coding processes, which is boosting productivity and efficiency, Pichai said during the call.

This was first reported by the Wall Street Journal. This comes after the company recently received a fundraise of $6 billion in a Series B round. The company said in a statement that the funding saw participation from several key investors, including Valor Equity Partners, Vy Capital, Andreessen Horowitz, Sequoia Capital, Fidelity Management & Research Company, Prince Alwaleed Bin Talal, Kingdom Holding, and others.

NASA and SpaceX are targeting 9:29 p.m. EST, Monday, Nov. 4, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 31st SpaceX commercial resupply services mission to the orbital laboratory for the agency.

Filled with nearly 6,000 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Live launch coverage will begin at 9:10 p.m. on NASA+ and the agency’s website. Learn how to watch NASA content through a variety of platforms, including social media.

“Al-determined tumor volume has the potential to advance precision medicine for patients with prostate cancer by improving our ability to understand the aggressiveness of a patient’s cancer and therefore recommend the most optimal treatment,” said Dr. David D. Yang, MD.


How can artificial intelligence (AI) help medical professionals identify, diagnose, and treat prostate cancer? This is what a recent study published in Radiology hopes to address as a team of researchers developed an AI model designed to identify prostate cancer lesions, which holds the potential to help medical professionals and patients make the best-informed decisions regarding diagnoses and treatment options.

For the study, which was conducted between January 2021 to August 2023, the researchers had their AI model examine MRI scans from 732 patients, including 438 patients who underwent radiation therapy (RT) and 294 patients who underwent radical prostatectomy (RP). The goal was to compare a potential success rate of the AI model identifying tumors compared to patient treatment between 5 to 10 years after being diagnosed.

In the end, the AI model demonstrated an 85 percent accuracy in identifying cancerous lesions. Additionally, the AI model identified the larger volume lesions that resulted in failed treatment and metastasis, which is when cancer tumors spread beyond the original location within the body. Finally, the AI model determined that RT patients were at a decreased risk of metastasis based on their tumor volumes.

“The Moon’s South Pole is a completely different environment than where we landed during the Apollo missions,” said Dr. Sarah Noble. “It offers access to some of the Moon’s oldest terrain, as well as cold, shadowed regions that may contain water and other compounds.”


Where will NASA’s Artemis Program precisely land astronauts near the lunar south pole? This is what the famed space agency hopes to figure out as they recently narrowed the list of potential landing regions from 13 to 9, underscoring NASA’s ongoing urgency in selecting a final landing site prior to landing astronauts on the Moon with the Artemis III in the next few years, along with landing the first woman and person of color on the lunar surface, as well. The selected regions will provide scientific opportunities based on geology, terrain, and access to water ice, the latter of which can be used for fuel, drinking, creating oxygen through electrolysis, and much more.

NASA has identified the following potential landing regions not listed in priority: Peak near Cabeus B, Haworth, Malapert Massif, Mons Mouton Plateau, Mons Mouton, Nobile Rim 1, Nobile Rim 2, de Gerlache Rim 2, Slater Plain. Each landing region consists of several square miles with more precise landing sites being determined later.