An international team led by researchers at MPI-CPfS used irradiation with extremely high-energy electrons to controllably introduce atomic defects in superconducting nickelate thin films. Their systematic investigation recently published in Physical Review Letters helps to narrow down the possible answers to fundamental questions of how superconductivity emerges in these materials.
Superconductors are materials that completely expel magnetic fields and perfectly transmit electrical current without any losses, properties which make them both fascinating playgrounds to probe fundamental physical understanding of materials as well as potentially revolutionary technological building blocks.
Some kinds of superconductors are relatively well-understood, explained by theoretical models developed starting in the 1950s. Other classes of superconductors remain more mysterious, but can exhibit superconductivity at higher temperatures, making them more attractive for practical applications.









