Toggle light / dark theme

Scientists have discovered a way to convert fluctuating lasers into remarkably stable beams that defy classical physics, opening new doors for photonic technologies that rely on both high power and high precision.

Lasers are essential tools in science, industry and medicine, but increasing their power often results in “”—unpredictable fluctuations in intensity that disrupt applications requiring consistent, stable light.

Researchers led by Cornell and the Massachusetts Institute of Technology have demonstrated how noisy, amplified lasers can be transformed into ultra-stable beams through the clever use of optical fibers and filters. The technique was detailed in Nature Photonics.

Chronic pain conditions, characterized by persistent or recurrent pain in specific parts of the body, can be highly debilitating and often significantly reduce the quality of life of the individuals experiencing them. Statistics suggest that approximately 20.9% of adults living in the United States have experienced chronic pain at some point in their lives, while 6.9% have experienced severe chronic pain that significantly impacted their daily functioning and well-being.

Currently, chronic pain is primarily treated using pain-relief medications, many of which are based on opioids. Yet many of these are highly addictive and have severe side effects, so they often end up causing more harm than good.

In recent years, some scientists and engineers have been trying to devise alternative strategies that do not rely on opioids and can ease the pain of patients without adversely impacting their health. One proposed solution entails the use of implantable electrical stimulators, devices that can be surgically inserted into a patient’s body, delivering to their nerves or to reduce the pain they are experiencing.

Statistical mechanics is one of the pillars of modern physics. Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903) were its primary formulators. They both worked to establish a bridge between macroscopic physics, which is described by thermodynamics, and microscopic physics, which is based on the behavior of atoms and molecules.

The Austrian physicist Boltzmann explained the second law of thermodynamics in statistical terms. He defined the entropy of a system based on the number of possible microstates it could assume.

Unlike Boltzmann, who focused more on the physics of gases and the distribution of particles in equilibrium, the American Gibbs developed a general mathematical formalism that could be extended to more complex systems. Together, their contributions formed the basis of a physics capable of modeling a wide variety of phenomena.

A pioneering method to simulate how nanoparticles move through the air could boost efforts to combat air pollution, suggests a study in the Journal of Computational Physics.

Tiny particles found in exhaust fumes, wildfire smoke and other forms of airborne pollution are linked with serious health conditions such as stroke, and cancer, but predicting how they move is notoriously difficult, researchers say.

Now, scientists have developed a new computer modeling approach that dramatically improves the accuracy and efficiency of simulating how nanoparticles behave in the air. In practice, this could mean simulations that can currently take weeks to run could be completed in a matter of hours, the team says.

A joint team of researchers led by scientists at King Abdullah University of Science and Technology (KAUST) and King Abdulaziz City for Science and Technology (KACST) has reported the fastest quantum random number generator (QRNG) to date based on international benchmarks. The QRNG, which passed the required randomness tests of the National Institute of Standards and Technology, could produce random numbers at a rate nearly a thousand times faster than other QRNG.

“This is a significant leap for any industry that depends on strong data security,” said KAUST Professor Boon Ooi, who led the study, which is published in Optics Express. KAUST Professor Osman Bakr also contributed to the study.

Random number generators are critical for industries that depend on security, such as health, finance, and defense. But the random number generators currently used are vulnerable because of an intrinsic flaw in their design.

Tête de Moine, a semi-hard Swiss cheese that often finds its way onto charcuterie boards and salads, not only brings a rich, nutty and creamy flavor, but also adds a dramatic flare to the presentation. Instead of slicing, this cheese is shaved into delicate rosettes using a tool called a Girolle whose rotating blade gently scrapes thin layers of cheese into ruffled curls. These pretty cheese flowers are known to enhance the flavor and texture due to their high surface-to-volume ratio.

The unusual way Tête de Moine forms wrinkles when shaved, piqued the interest of a team of physicists who, in a study published in Physical Review Letters, set out to investigate the physical mechanisms behind these intricate shapes.

Similar morphogenetic patterns can be observed in the frilly edges of leaves, fungi, corals, or even torn , but the mechanisms that explain the similar shapes in these materials fail to account for the distinctive physical properties of .

Quarks unexpectedly breaking symmetry in a recent experiment may transform our fundamental understanding of matter and the forces that hold it together. Mississippi State University Professor of Physics Dipangkar Dutta is leading a groundbreaking experiment that is reshaping our understanding of

The world is ending and only the whales know. At least, that’s one explanation. Humpback whales are normally pretty solitary—scientists used to call groups of 10 to 20 “large.” Now they’re congregating in groups of 20 to 200 off the coast of South Africa. Something is definitely going on here, but so far experts are stumped.

In fact, Humpback whales aren’t supposed to be hanging out in that region in the first place. Humpbacks migrate up to tropical waters to breed, but they typically feed down south in the icy waters of Antarctica this time of year. Yet scientific expeditions keep seeing these super-pods (not to be confused with super PACs, which are equally giant but much more dangerous), which were finally compiled and published at the beginning of March in the journal PLOSone. The researchers have a few ideas about why the humpbacks are organizing, but no clear answers yet. So far the consensus seems to be: this is pretty freakin’ weird.

Most of the whales seem to be young, begging the question of whether the western coast of South Africa is like the humpback version of the local mall for tween whales. They’re just looking for a fishy Orange Julius, or perhaps a krill-based Panda Express to hang out at on a Saturday afternoon. Because it’s not like 200 whales—each weighing about 65,000 pounds —can feed just anywhere.

Persons with Parkinson’s disease increasingly lose their mobility over time and are eventually unable to walk. Hope for these patients rests on deep brain stimulation, also known as a brain pacemaker.

In a current study, researchers at Ruhr University Bochum and Philipps-Universität Marburg, Germany, investigated whether and how stimulation of a certain region of the brain can have a positive impact on ambulatory ability and provide patients with a higher quality of life. To do this, the researchers used a technique in which the are activated and deactivated via light. Their report is published in the journal Scientific Reports.

Researchers led by Maike Sander, Scientific Director of the Max Delbrück Center, have developed a vascularized organoid model of hormone secreting cells in the pancreas. The advance, published in “Developmental Cell,” promises to improve diabetes research and cell-based therapies.

An international team of researchers led by Max Delbrück Center Scientific Director Professor Maike Sander has for the first time developed an organoid model of human pluripotent stem cell-derived pancreatic islets (SC-islets) with integrated vasculature. Islets are cell clusters in the pancreas that house several different types of hormone-secreting cells, including insulin-producing beta cells. Researchers in the Sander lab at the University of California, San Diego, found that SC-islet organoids with blood vessels contained greater numbers of mature beta cells and secreted more insulin than their non-vascularized counterparts. The vascularized organoids more closely mimicked islet cells found in the body. The study was published in “Developmental Cell.”

“Our results highlight the importance of a vascular network in supporting pancreatic islet cell function,” says Sander. “This model brings us closer to replicating the natural environment of the pancreas, which is essential for studying diabetes and developing new treatments.”