Toggle light / dark theme

The Axion Longitudinal Plasma Haloscope (ALPHA) experiment reached a milestone on February 24 with the successful installation of a Bluefors helium dilution fridge at the site of the experiment in Wright Lab.

ALPHA will extend the search for a hypothetical dark matter candidate—a very low-mass particle called the axion—to a higher mass range than has been searched for previously.

Michael Jewell, associate research scientist in physics and a member of Yale’s Wright Lab is the ALPHA project technical coordinator. Jewell explained, “In order for ALPHA to achieve its physics goal, we need to limit any potential source. For us, the biggest source of noise is thermal noise from the experiment. So we operate the whole experiment in the coldest commercially available systems, which are helium dilution fridges that are able to cool down to ~10 millikelvin (mK).”

In a new study published in Physical Review D, Professor Ginestra Bianconi, Professor of Applied Mathematics at Queen Mary University of London, proposes a new framework that could revolutionize our understanding of gravity and its relationship with quantum mechanics.

The study, titled “Gravity from Entropy,” introduces a novel approach that derives from quantum relative entropy, bridging the gap between two of the most fundamental yet seemingly incompatible theories in physics: and Einstein’s general relativity.

One limitation of producing biofuel is that the alcohol created by fermentation is toxic to the microbes that produce it. Now scientists are closer to overcoming this obstacle.

Researchers from the University of Cincinnati and the U.S. Department of Energy’s Oak Ridge National Laboratory have achieved a breakthrough in understanding the vulnerability of microbes to the alcohols they produce during of plant biomass.

With the national lab’s neutron scattering and simulation equipment, the team analyzed fermentation of the biofuel , an energy-packed alcohol that also can be used as a solvent or chemical feedstock.

A smartphone’s glow is often the first and last thing we see as we wake up in the morning and go to sleep at the end of the day. It is increasingly becoming an extension of our body that we struggle to part with. In a recent study in Computers in Human Behavior, scientists observed that staying away from smartphones can even change one’s brain chemistry.

The researchers recruited for a 72-hour smartphone restriction diet where they were asked to limit to essential tasks such as work, , and communication with their family or significant others.

During these three days, the researchers conducted psychological tests and did brain scans using imaging (fMRI) to examine the effects of restricting phone usage. Brain scans showed significant activity shifts in reward and craving regions of the brain, resembling patterns seen in substance or alcohol addiction.

For the first time, researchers have identified that inflammation—long associated with multiple sclerosis (MS)—appears to cause increased mutations linked to MS progression.

MS is a progressive neurological disease that affects 33,000 Australians and three million people worldwide. About one-third of people living with MS have progressive disease, which current treatments do not address effectively.

The researchers studied MS brain lesions, visible as spots on MRI scans, which are areas of past or ongoing brain inflammation. They found located in MS brain lesions have a that is two-and-a-half times faster than in normal neurons.

Proteins in cells are highly flexible and often exist in multiple conformations, each with unique abilities to bind ligands. These conformations are regulated by the organism to control protein function. Currently, most studies on protein structure and activity are conducted using purified proteins in vitro, which cannot fully replicate the complexity of the intracellular environment and may be influenced by the purification process or buffer conditions.

In a study published in the Journal of the American Chemical Society, a team led by Prof. Wang Fangjun from the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (CAS), collaborating with Prof. Huang Guangming from the University of Science and Technology of China of CAS, developed a new method for in-cell characterization of proteins using vacuum ultraviolet photodissociation top-down (UVPD-TDMS), providing an innovative technology for analyzing the heterogeneity of intracellular protein in situ with MS.

Researchers combined in-cell MS with 193-nm UVPD to directly analyze protein structures within cells. This method employed induced electrospray ionization, which ionizes intracellular proteins with minimal structural perturbation.

Deciphering some people’s writing can be a major challenge—especially when that writing is cuneiform characters imprinted onto 3,000-year-old tablets.

Now, Middle East scholars can use (AI) to identify and copy over cuneiform characters from photos of tablets, letting them read complicated scripts with ease.

Along with Egyptian hieroglyphs, cuneiform is one of the oldest known forms of writing, and consists of more than 1,000 unique characters. The appearance of these characters can vary across eras, cultures, geography and even individual writers, making them difficult to interpret. Researchers from Cornell and Tel Aviv University (TAU) have developed an approach called ProtoSnap that “snaps” into place a prototype of a character to fit the individual variations imprinted on a tablet.

The human brain continuously processes the wide range of information it acquires from the outside world. Over time, this information is organized into mental representations, referred to as “schema,” which help us to understand what is happening at a given time and make predictions about what will happen next.

Temporal schemas are that specifically outline the order in which specific events occur. For instance, when attending a wedding, temporal schemas could allow us to anticipate the order in which different parts of the ritual (e.g., the arrival of the bride, the exchange of vows, etc.) will take place.

Researchers at Tilburg University and Princeton University recently carried out a study aimed at further exploring how the brain represents these structured sequences of events.

3D printing is revolutionizing microbial electrochemical systems (MES) by enabling precise reactor design, custom electrode fabrication, and enhanced bioprinting applications. These innovations optimize pollutant degradation and energy production, with significant implications for sustainability and environmental management.

Microbial electrochemical systems (MES) are emerging as a promising technology for addressing environmental challenges by leveraging microorganisms to transfer electrons. These systems can simultaneously degrade pollutants and generate electricity, making them valuable for sustainable wastewater treatment and energy production.

However, conventional methods for constructing MES components often lack design flexibility, limiting performance optimization. To overcome these limitations and enhance MES efficiency, innovative fabrication techniques are needed—ones that allow precise control over reactor structures and functions.

Deep within certain magnetic molecules, atoms arrange their spins in a spiral pattern, forming structures called chiral helimagnets. These helical spin patterns have intrigued researchers for years due to their potential for powering next-generation electronics. But decoding their properties has remained a mystery—until now.

Researchers at the University of California San Diego have developed a to accurately model and predict these complex spin structures using quantum mechanics calculations. Their work was published on Feb. 19 in Advanced Functional Materials.

“The helical spin structures in two-dimensional layered materials have been experimentally observed for over 40 years. It has been a longstanding challenge to predict them with precision,” said Kesong Yang, professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at the UC San Diego Jacobs School of Engineering and senior author of the study. “The helical period in the layered compound extends up to 48 nanometers, making it extremely difficult to accurately calculate all the electron and spin interactions at this scale.”