Deep within certain magnetic molecules, atoms arrange their spins in a spiral pattern, forming structures called chiral helimagnets. These helical spin patterns have intrigued researchers for years due to their potential for powering next-generation electronics. But decoding their properties has remained a mystery—until now.
Researchers at the University of California San Diego have developed a new computational approach to accurately model and predict these complex spin structures using quantum mechanics calculations. Their work was published on Feb. 19 in Advanced Functional Materials.
“The helical spin structures in two-dimensional layered materials have been experimentally observed for over 40 years. It has been a longstanding challenge to predict them with precision,” said Kesong Yang, professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at the UC San Diego Jacobs School of Engineering and senior author of the study. “The helical period in the layered compound extends up to 48 nanometers, making it extremely difficult to accurately calculate all the electron and spin interactions at this scale.”