Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

How capillary constriction triggers metastasis

Nine of the 10 most common cancer deaths are caused by solid tumours, but in most cases it’s the cancer’s spread to other parts of the body – known as metastasis – that proves fatal.

Now, researchers have uncovered a potential trigger for metastasis: the squeezing of cancer cells by the tiniest of veins that transforms them into a different type of cell now able to form new tumors.

In a study published in Nature Communications, the scientists described how they constructed a biomedical device that simulated blood flow through our narrowest blood veins. They showed that when human melanoma cancer cells are forced through channels narrower than 10 micrometres – about a fifth the width of a human hair – they begin to behave more like stem cells, gaining traits that could help them survive, spread, and form new tumors.

Spaceflight activates ‘dark genome’ in human cells, researcher says

Spaceflight makes certain human stem cells age faster, a new study has found, furthering scientists’ understanding of the potential effects of space exploration on the human body.

Stem cells are found throughout the body, and they can make more of themselves or turn into other specialized cells — including blood, brain or bone cells — for maintenance and repair.

“In space, stem cells decline in function,” said lead study author Catriona Jamieson, director of the Sanford Stem Cell Institute and professor of medicine at the University of California, San Diego School of Medicine. “They actually reduce their ability to renew themselves or regenerate, and that’s an important thing to be able to know for long-term space missions.”

This Crawling Robot Is Made With Living Brain and Muscle Cells

Watching the robot crawl around is amusing, but the study’s main goal is to see if a biohybrid robot can form a sort of long-lasting biological “mind” that directs movement. Neurons are especially sensitive cells that rapidly stop working or even die outside of a carefully controlled environment. Using blob-like amalgamations of different types of neurons to direct muscles, the sponge-bots retained their crawling ability for over two weeks.

Scientists have built biohybrid bots that use electricity or light to control muscle cells. Some mimic swimming, walking, and grabbing motions. Adding neurons could further fine-tune their activity and flexibility and even bestow a sort of memory for repeated tasks.

These biohybrid bots offer a unique way to study motion, movement disorders, and drug development without lab animals. Because their components are often compatible with living bodies, they could be used for diagnostics, drug delivery, and other medical scenarios.

Envisioning a Neutrino Laser

A Bose-Einstein condensate of radioactive atoms could turn into a source of intense, coherent, and directional neutrino beams, according to a theoretical proposal.

Neutrinos are the most abundant massive particles in the Universe, yet they are the ones about which we know the least. What makes these elusive particles hard to study is their feeble interaction with matter—trillions of neutrinos pass through our bodies every second without leaving a trace. However, neutrinos may hold deep secrets about the Universe—understanding their properties could hint at new particles and forces beyond the standard model of particle physics or shed light on why matter came to dominate over antimatter. Despite these tantalizing prospects, some of the most basic questions about neutrinos remain unanswered. To address such questions experimentally, Benjamin Jones of the University of Texas at Arlington and Joseph Formaggio of MIT suggest that a Bose-Einstein condensate (BEC) of radioactive atoms could offer a platform for building a “neutrino laser” [1].

Quantum Computing Meets Finance

Eric Ghysels made a name for himself in financial econometrics and time-series analysis. Now he translates financial models into quantum algorithms.

Economist Eric Ghysels has spent most of his career fascinated by a fundamental problem in the financial industry: figuring out how to put a price on any financial asset whose future value depends on market conditions. Ghysels, a professor at the University of North Carolina at Chapel Hill, has now set himself a new problem: studying the impact that quantum computing could have on solving asset pricing, portfolio optimization, and other computationally intensive financial problems.

He admits that nobody knows when quantum computers will have commercially viable applications, but, he says, it’s important to invest now. Physics Magazine spoke with Ghysels to learn why.

Physicists demonstrate controlled expansion of quantum wavepacket in a levitated nanoparticle

Quantum mechanics theory predicts that, in addition to exhibiting particle-like behavior, particles of all sizes can also have wave-like properties. These properties can be represented using the wave function, a mathematical description of quantum systems that delineates a particle’s movements and the probability that it is in a specific position.

/* */