Menu

Blog

Page 5473

Dec 10, 2021

Simulating matter on the quantum scale with AI

Posted by in categories: biotech/medical, quantum physics, robotics/AI

These longstanding challenges are both related to how functionals behave when presented with a system that exhibits “fractional electron character.” By using a neural network to represent the functional and tailoring our training dataset to capture the fractional electron behaviour expected for the exact functional, we found that we could solve the problems of delocalization and spin symmetry-breaking. Our functional also showed itself to be highly accurate on broad, large-scale benchmarks, suggesting that this data-driven approach can capture aspects of the exact functional that have thus far been elusive.

For years, computer simulations have played a central role in modern engineering, making it possible to provide reliable answers to questions like “will this bridge stay up?” to “will this rocket make it into space?” As technology increasingly turns to the quantum scale to explore questions about materials, medicines, and catalysts, including those we’ve never seen or even imagined, deep learning shows promise to accurately simulate matter at this quantum mechanical level.

Dec 10, 2021

Advanced Detectors for a New Era of ATLAS Physics at the Large Hadron Collider

Posted by in category: particle physics

The ATLAS Experiment at CERN

Established in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider, the largest particle physics laboratory in the world. Its full name is the European Organization for Nuclear Research (French: Organisation européenne pour la recherche nucléaire) and the CERN acronym comes from the French Conseil Européen pour la Recherche Nucléaire.

Dec 10, 2021

Space sleeping bag to solve astronauts’ squashed eyeball disorder

Posted by in category: space

Scientists hope the hi-tech sleeping bag will stop eyeballs being squashed by zero-gravity in space.

Dec 10, 2021

CRISPR gene therapy, ultrasound and drugs team up against liver cancer

Posted by in categories: bioengineering, biotech/medical, nanotechnology

Researchers in China have developed a new three-pronged method to fight liver cancer that shows promise in tests in mice. The technique combines drugs and CRISPR-Cas9 gene editing into lipid nanoparticles, then activates them with ultrasound.

One emerging treatment against cancer is known as sonodynamic therapy (SDT), which involves delivering drugs to the tumor and then activating them with ultrasound pulses. That produces reactive oxygen species (ROS) that can induce oxidative stress on the cancer cells to kill them. Unfortunately, cancer can counter this attack with antioxidant enzymes, reducing the method’s efficiency.

So for the new study, the researchers investigated a way to remove that defense system. The team suspected that they could use CRISPR to switch off a gene called NFE2L2, which cancer cells use to set off their antioxidant defenses. The team packaged both the CRISPR machinery and the ROS-producing drugs into lipid nanoparticles, which could be activated with ultrasound pulses.

Dec 10, 2021

Crucial leap in error mitigation for quantum computers

Posted by in categories: computing, information science, quantum physics

Researchers at Lawrence Berkeley National Laboratory’s Advanced Quantum Testbed (AQT) demonstrated that an experimental method known as randomized compiling (RC) can dramatically reduce error rates in quantum algorithms and lead to more accurate and stable quantum computations. No longer just a theoretical concept for quantum computing, the multidisciplinary team’s breakthrough experimental results are published in Physical Review X.

The experiments at AQT were performed on a four-qubit superconducting quantum processor. The researchers demonstrated that RC can suppress one of the most severe types of errors in quantum computers: coherent errors.

Akel Hashim, AQT researcher, involved in the experimental breakthrough and a graduate student at the University of California, Berkeley explained: “We can perform quantum computations in this era of noisy intermediate-scale quantum (NISQ) computing, but these are very noisy, prone to errors from many different sources, and don’t last very long due to the decoherence—that is, information loss—of our qubits.”

Dec 10, 2021

I wrote the book on warp drive. No, we didn’t accidentally create a warp bubble

Posted by in category: space travel

The same (former) NASA engineer who previously claimed to violate Newton’s laws is now claiming to have made a warp bubble. He didn’t.

Dec 10, 2021

Building a private space station: Q&A with Axiom Space CTO Matt Ondler

Posted by in categories: habitats, space travel

In 2020, Houston-based company Axiom Space got a NASA contract of its own, worth up to $140 million, to deliver at least one habitable private module to the ISS. Axiom plans to launch its first element to the orbiting lab in late 2024, then send several more up over the next few years. Eventually, the connected Axiom modules will detach from the ISS, leaving their natal nest like a bird that has learned how to fly.

Axiom has other irons in the spaceflight fire as well. For instance, the company has booked four commercial crewed flights to the ISS with SpaceX, the first of which is scheduled to launch in February.

Dec 10, 2021

SpaceX converts Falcon Heavy core into Falcon 9 booster

Posted by in categories: military, satellites

More than two years after the rocket’s last launch, SpaceX appears to have finally decided to give at least one of two surviving Falcon Heavy Block 5 cores a new lease on life as a Falcon 9 booster.

Known as B1052, the Falcon Heavy side core or booster debuted in April 2019 as part of the first flight of the rocket’s Block 5 variant, successfully launching Saudi Arabia’s large Arabsat 6A communications satellite to an almost 90,000 km (56,000 mi) transfer orbit. Following in the footsteps of the first Falcon Heavy, the first Block 5 vehicle repeated its predecessor’s iconic double-landing back at Cape Canaveral. Just 74 days later, both Falcon Heavy Block 5 side boosters B1052 and B1053 launched again, this time supporting the US military’s long-delayed STP-2 rideshare and qualification mission.

Dec 10, 2021

What’s a Time Crystal?

Posted by in category: futurism

Dec 10, 2021

Nanotechnology for genome editing in multiple muscles simultaneously

Posted by in categories: biotech/medical, chemistry, food, genetics, nanotechnology

Many intractable diseases are the result of a genetic mutation. Genome editing technology promises to correct the mutation and thus new treatments for patients. However, getting the technology to the cells that need the correction remains a major challenge. A new study led by CiRA Junior Associate Professor Akitsu Hotta and in collaboration with Takeda Pharmaceutical Company Limited as part of the T-CiRA Joint Research Program reports how lipid nanoparticles provide an effective means for the delivery to treat Duchenne muscular dystrophy (DMD) in mice.

Last year’s Nobel Prize for Chemistry to the discoverers of CRISPR-Cas9 cemented the impact of genome editing technology. While CRISPR-Cas9 can be applied to agriculture and livestock for more nutritious food and robust crops, most media attention is on its medical potential. DMD is just one of the many diseases that researchers foresee a treatment using CRISPR-Cas9.

“Oligonucleotide drugs are now available for DMD, but their effects are transient, so the patient has to undergo weekly treatments. On the other hand, CRISPR-Cas9 effects are long lasting,” said Hotta.