Menu

Blog

Page 5101

Jun 7, 2022

Quantum information was teleported over a network for the first time

Posted by in categories: biotech/medical, computing, internet, neuroscience, quantum physics

When Heroes (now streaming on Peacock!) hit the airwaves in September of 2006, few characters were as immediately beloved as the appropriately named Hiro Nakamura. Granted the ability to manipulate space-time, Hiro could not only slow down, speed up, and stop time, he could also teleport from one place to another. That’s a useful skill if you need to get to a specific point in time and space to fight an evil brain surgeon or prevent the end of the world. It’s also useful if you want to build the quantum internet.

Researchers at QuTech — a collaboration between Delft University of Technology and the Netherlands Organization for Applied Scientific Research — recently took a big step toward making that a reality. For the first time, they succeeded in sending quantum information between non-adjacent qubits on a rudimentary network. Their findings were published in the journal Nature.

While modern computers use bits, zeroes, and ones, to encode information, quantum computers us quantum bits or qubits. A qubit works in much the same way as a bit, except it’s able to hold both a 0 and a 1 at the same time, allowing for faster and more powerful computation. The trouble begins when you want to transmit that information to another location. Quantum computing has a communications problem.

Jun 7, 2022

Artificial General Intelligence Is Not as Imminent as You Might Think

Posted by in category: robotics/AI

A close look reveals that the newest systems, including DeepMind’s much-hyped Gato, are still stymied by the same old problems.

Jun 6, 2022

Transplantation of Human Gingiva-Derived Mesenchymal Stem Cells Ameliorates Neurotic Erectile Dysfunction in a Rat Model

Posted by in categories: biotech/medical, life extension, neuroscience

Circa 2021 Immortality of the male genitalia in humans.


Cavernous nerve injury (CNI) is the main cause of erectile dysfunction (ED) following pelvic surgery. Our previous studies have demonstrated that transplantation of different sources of mesenchymal stem cells (MSCs) was able to alleviate ED induced by CNI in rat models. However, little is known about the therapeutic effects of human gingiva-derived MSCs (hGMSCs) in CNI ED rats. Herein, we injected the hGMSCs around the bilateral major pelvic ganglia (MPG) in a rat model of CNI and evaluated their efficacy. The results showed that treatment of hGMSCs could significantly promote the recovery of erectile function, enhance smooth muscle and endothelial content, restore neuronal nitric oxide synthase (nNOS) expression, and attenuate cell apoptosis in penile tissue. Moreover, penile fibrosis was significantly alleviated after hGMSC administration. In addition, potential mechanism exploration indicated that hGMSCs might exert its functions via skewed macrophage polarity from M1 toward M2 anti-inflammatory phenotype. In conclusion, this study found that transplantation of hGMSCs significantly improved CNI-related ED, which might provide new clues to evaluate their pre-clinical application.

There are many causes of erectile dysfunction (ED), which include psychological factors, neurological disorders (such as multiple sclerosis, temporal lobe epilepsy, and cavernous nerve injury), and vasculogenic disorders (such as atherosclerosis, hypertension, and diabetes mellitus). Neurogenic sexual dysfunction makes up about 10–19% in all causes of erectile dysfunction. Neurotic erectile dysfunction is one of most important complications after radical prostatectomy and rectectomy, owing to intraoperative damage of the pelvic cavernous nerve (CN). It affects not only the physical but also mental health in postoperative patients. Despite the improvement of nerve-sparing techniques, the incidence of neurotic ED still has no substantial improvement. The incidences of ED range from 75 to 80% after pelvic surgery (Schauer et al., 2015).

Jun 6, 2022

Secretomes of human pluripotent stem cell-derived smooth muscle cell progenitors upregulate extracellular matrix metabolism in the lower urinary tract and vagina & Therapy

Posted by in categories: biotech/medical, life extension

Circa 2021 Secretomes of human pluripotent stem cell-derived smooth muscle cell progenitors upregulate extracellular matrix metabolism in the lower urinary tract and vagina.


Adult mesenchymal stem cells (MSCs) have been studied extensively for regenerative medicine; however, they have limited proliferation in vitro, and the long culture time induces cell senescence. MSCs also contribute to tissue repair through their paracrine function. In this study, we sought to examine the paracrine effects of human smooth muscle cell progenitors (pSMC) on the urethra and adjacent vagina of stress urinary incontinence rodents. We use human pluripotent stem cell (PSC) lines to derive pSMCs to overcome the issue of decreased proliferation in tissue culture and to obtain a homogenous cell population.

Three human PSC lines were differentiated into pSMCs. The conditioned medium (CM) from pSMC culture, which contain pSMC secretomes, was harvested. To examine the effect of the CM on the extracellular matrix of the lower urinary tract, human bladder smooth muscle cells (bSMCs) and vaginal fibroblasts were treated with pSMC-CM in vitro. Stress urinary incontinence (SUI) was induced in rats by surgical injury of the urethra and adjacent vagina. SUI rats were treated with pSMC-CM and monitored for 5 weeks. Urethral pressure testing was performed prior to euthanasia, and tissues were harvested for PCR, Western blot, and histological staining. Kruskal-Wallis one-way ANOVA test and Student t test were used for statistical comparisons.

Continue reading “Secretomes of human pluripotent stem cell-derived smooth muscle cell progenitors upregulate extracellular matrix metabolism in the lower urinary tract and vagina & Therapy” »

Jun 6, 2022

AI translates maths problems into code to make them easier to solve

Posted by in category: robotics/AI

An artificial intelligence can translate maths problems written in plain English to formal code, making them easier for computers to solve in a crucial step towards building a machine capable of discovering new maths.

Jun 6, 2022

New NASA spacecraft could survive a hellish descent on Venus

Posted by in categories: chemistry, space

NASA will launch a mission that will both fly by Venus and descend through its harsh atmosphere in 2029. Called DAVINCI, the Deep Atmosphere Venus Investigation of Noble gases, Chemistry and Imaging mission will be the first to study Venus through both flybys and descent.

The spacecraft is expected to explore the layered Venusian atmosphere and reach its surface by June 2031. The DAVINCI mission will be able to capture data about Venus that scientists have been eager to measure since the early 1980s.

Only two NASA missions have previously visited the second planet from our sun – Pioneer in 1978 and Magellan in the early ’90s.

Jun 6, 2022

Every Single Patient in This Small Experimental Drug Trial Saw Their Cancer Disappear

Posted by in categories: biotech/medical, innovation

😃


In what appears to be a very promising breakthrough for the treatment of rectal cancer, a small drug trial conducted in the US found every patient treated in the experiment had their cancer successfully go into remission.

Continue reading “Every Single Patient in This Small Experimental Drug Trial Saw Their Cancer Disappear” »

Jun 6, 2022

Using mirrors, lasers and lenses to bend light into a vortex ring

Posted by in categories: information science, mapping, mathematics

A team of researchers from the University of Shanghai for Science and Technology and the University of Dayton has developed a way to bend light into a vortex ring using mirrors, lasers and lenses. In their study, published in the journal Nature Photonics, the group built on work done by other teams in which vortex rings were observed incidentally, and then mathematically designed a system that could generate them on demand.

In 2016, another team of researchers discovered that under the right circumstances, strong pulses of light swirling around a central pipe-shaped pulse, could sometimes form into a donut-shaped vortex. Intrigued by the finding, the researchers with this new effort began to wonder if it might be possible to create such on demand.

They started by studying the properties and conditions that had led to the formations observed by the team in 2016 and applied mathematics to the problem. They found solutions that appeared to show how such rings could be made—solutions to Maxwell’s equations, in particular, they found, could be used to generate the kind of conformal mapping required.

Jun 6, 2022

Axon halts plans to make a drone equipped with a Taser

Posted by in categories: drones, education, ethics, robotics/AI

Axon has paused work on a project to build drones equipped with its Tasers. A majority of its artificial intelligence ethics board quit after the plan was announced last week.

Nine of the 12 members said in a resignation letter that, just a few weeks ago, the board voted 8–4 to recommend that Axon shouldn’t move forward with a pilot study for a Taser-equipped drone concept. “In that limited conception, the Taser-equipped drone was to be used only in situations in which it might avoid a police officer using a firearm, thereby potentially saving a life,” the nine board members wrote. They noted Axon might decline to follow that recommendation and were working on a report regarding measures the company should have in place were it to move forward.

The nine individuals said they were blindsided by an announcement from the company last Thursday — nine days after 19 elementary school students and two teachers were killed in a mass shooting in Uvalde, Texas — about starting development of such a drone. It had an aim of “incapacitating an active shooter in less than 60 seconds.” Axon said it “asked the board to re-engage and consider issuing further guidance and feedback on this capability.”

Jun 6, 2022

Time crystals ‘impossible’ but obey quantum physics

Posted by in categories: particle physics, quantum physics

Scientists have created the first “time-crystal” two-body system in an experiment that seems to bend the laws of physics.

It comes after the same team recently witnessed the first interaction of the new phase of matter.

Time were long believed to be impossible because they are made from in never-ending motion. The discovery, published in Nature Communications, shows that not only can crystals be created, but they have potential to be turned into useful devices.