Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Deciphering the Origin of Quark and Lepton Mass

Measurements of the decay of the Higgs boson into muon–antimuon pairs provide evidence for the mechanism by which quarks and leptons acquire their mass.

The most basic bits of matter that we have found are quarks and leptons, which we idealize as point-like objects with no internal structure and no measurable size (experiments constrain their sizes to below an attometer, a billionth of a billionth of a meter). The quarks, which experience strong, weak, and electromagnetic interactions, come in six flavors: up and down (the constituents of the proton and neutron), charm and strange, and top and bottom. The charged leptons—electron, muon, and tau—experience weak and electromagnetic interactions, while the neutral leptons—the three neutrinos—feel only the weak interactions. The masses of the quarks and charged leptons span more than 5 orders of magnitude: The top-quark mass is nearly 340,000 times that of the electron.

The ‘silent’ brain cells that shape our behaviour, memory and health

Researchers peered through microscopes, hooked up electrodes, and built entire careers around one cell type: neurons. These electrically active cells were clearly the brain’s protagonists, zipping signals through our heads at lightning speed to create thoughts, memories, and movements. Everything else—especially the star-shaped cells called astrocytes that outnumber neurons—was dismissed as mere scaffolding. Glial cells, they were called: “glue.”

Inbal Goshen, a memory researcher at Hebrew University of Jerusalem, remembers feeling like an outsider when she started investigating astrocytes in the early 2010s. “Oh, that’s the weird one who works on astrocytes,” she imagined colleagues whispering at conferences. The skepticism was palpable. Yet new molecular tools had finally given her a way to peek into these mysterious cells, and what she found was too intriguing to ignore.

Unlike neurons, astrocytes don’t fire electrical signals. They were “electrically silent,” which is why they’d been ignored. But they were whispering in another language entirely: calcium. Using advanced imaging, researchers discovered that astrocytes communicate through slow, rhythmic waves of calcium signals—more like a gentle tide than neuron’s lightning strike. And their reach is astonishing: a single human astrocyte can touch up to two million synapses, the junctions where neurons meet. Their bushy tendrils fill every crevice of the brain, each cell nestling against neurons and blood vessels, creating an intimate, three-way relationship.

Memory research revealed another layer. Goshen’s team watched astrocytes in mice navigating toward water rewards. As the animals approached familiar prize locations, astrocyte activity slowly ramped up—but showed no response in new environments. The cells were encoding spatial memories, not just supporting them. Other labs found that astrocytes help stabilize and recall fear memories, their slow calcium signals perfectly suited to bridge the gap between learning something and remembering it days later. As neuroscientist Jun Nagai describes it, “Think of them as the brain’s long-exposure camera: they capture the trace of meaningful events that might otherwise fade too fast.”


Astrocytes make up one-quarter of the brain, but researchers are only now realizing their true value.

/* */