Toggle light / dark theme

Dr Vittorio Sabastiano explains the possibilities on resetting the age of any cell type in the near future in this clip.

Dr. Vittorio Sebastiano is an Assistant Professor in the Department of Obstetrics and Gynecology at Stanford School of Medicine. His lab has established a new technology named ERA (Epigenetic Reprogramming of Aging), which repurposes the conceptual idea of reprogramming, with the goal to promote epigenetic rejuvenation of adult cells leaving their identity untouched. This new technology was patented and is being implemented by Turn Biotechnologies, of which Dr. Sebastiano is co-founder and Chair of the Scientific Advisory Board.

In 2009, Dr. Sebastiano completed a postdoctoral fellowship at the laboratory of Dr. Marius Wernig at Stanford University, where he implemented the newly discovered iPSC technology and was among the first to demonstrate that iPSCs can be efficiently derived, genetically modified, and implemented for cell therapy in genetic diseases (Sebastiano et al., 2014, Science Translational Medicine).
Dr. Sebastiano completed his undergraduate and graduate studies at the University of Pavia, Italy, where he studied murine germ cells and preimplantation development and where he pioneered cellular reprogramming by Somatic Cell Nuclear Transfer. He joined the Max Planck Institute for Molecular Biomedicine as a postdoctoral fellow under the mentorship of Dr. Hans Robert Schöler, where he continued his research on cellular reprograming, germ cells biology, and embryonic development.

DISCLAIMER: Please note that none of the information in this video constitutes health advice or should be substituted in lieu of professional guidance. The video content is purely for informational purposes.

Circa 2016 face_with_colon_three


The Deutsche Physikalische Gesellschaft (DPG) with a tradition extending back to 1,845 is the largest physical society in the world with more than 61,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.

Did you know there’s a silent war going on inside your home? Alternating current (AC) electricity comes in from the grid, but many of your appliances and lighting run on direct current (DC). Every time you plug in a TV, computer or cell phone charger, power must be individually converted from AC to DC — a costly and inefficient process. Purdue University researchers have proposed a solution to the problem by retrofitting an entire house to run on its own efficient DC-powered nano-grid.

The project to transform a 1920s-era West Lafayette home into the DC Nanogrid House began in 2017 under the direction of Eckhard Groll, the William E. and Florence E. Perry Head of Mechanical Engineering, and member of Purdue’s Center for High Performance Buildings. “We wanted to take a normal house and completely retrofit it with DC appliances and DC architecture,” Groll said. “To my knowledge, no other existing project has pursued an experimental demonstration of energy consumption improvements using DC power in a residential setting as extensively as we have.”

A new optical device measures photon indistinguishability—an important property for future light-based quantum computers.

Photons can be used to perform complex computations, but they must be identical or close to identical. A new device can determine the extent to which several photons emitted by a source are indistinguishable [1]. Previous methods only gave a rough estimate of the indistinguishability, but the new method offers a precise measurement. The device—which is essentially an arrangement of interconnected waveguides—could work as a diagnostic tool in a quantum optics laboratory.

In optical quantum computing, sequences of photons are made to interact with each other in complex optical circuits (see Synopsis: Quantum Computers Approach Milestone for Boson Sampling). For these computations to work, the photons must have the same frequency, the same polarization, and the same time of arrival in the device. Researchers can easily check if two photons are indistinguishable by sending them through a type of interferometer in which two waveguides—one for each photon—come close enough that one photon can hop into the neighboring waveguide. If the two photons are perfectly indistinguishable, then they always end up together in the same waveguide.

An experimental combination of two drugs halts the progression of small cell lung cancer, the deadliest form of lung cancer, according to a study in mice from researchers at Washington University School of Medicine in St. Louis, Grenoble Alpes University in Grenoble, France, and The University of Texas MD Anderson Cancer Center in Houston.

One of the drugs, cyclophosphamide, is an outdated chemotherapy drug once used to treat small cell lung cancer. It was displaced in favor of platinum-based drugs in the 1980s. Both kinds of drugs work at first but falter after a few months as the cancer develops resistance. Platinum-based drugs became the standard of care mainly because they cause lesser side effects, but they have not substantially improved prognosis. Today, the typical patient survives less than a year and a half after diagnosis.

In this study, however, researchers showed that small cell lung cancer cells resist cyclophosphamide by activating a specific repair process, and demonstrated that throwing a wrench into the repair process makes the drug much more effective, at least in mice. The findings, available online in Cancer Discovery, suggest a pathway to better therapies for one of the least treatable forms of cancer.

Title: Strong AI: Why we should be concerned about something nobody knows how to build.
Synopsis: At the moment, nobody fully knows how to create an intelligent system that rivals or exceed human capabilities (Strong AI). The impact and possible dangers of Strong AI appear to concern mostly those futurists that are not working in day-to-day AI research. This in turn gives rise to the idea that Strong AI is merely a myth, a sci fi trope and nothing that is ever going to be implemented. The current state of the art in AI is already sufficient to lead to irrevocable changes in labor markets, economy, warfare and governance. The need to deal with these near term changes does not absolve us from considering the implications of being no longer the most intelligent beings on this planet.
Despite the difficulties of developing Strong AI, there is no obvious reason why the principles embedded in biological brains should be outside of the range of what our engineering can achieve in the near future. While it is unlikely that current narrow AI systems will neatly scale towards general modeling and problem solving, many of the significant open questions in developing Strong AI appear to be known and solvable.

Talk held at ‘Artificial Intelligence / Human Possibilities’ event as adjunct to the AGI17 conference in Melbourne 2017.

Assessing emerging risks and opportunities in machine cognition.

With AI Experts Ben Goertzel, Marcus Hutter, Peter Cheeseman and Joscha Bach.