Toggle light / dark theme

A Q&A with Caltech alumnus John Clauser on his first experimental proof of quantum entanglement.

When scientists, including Albert Einstein and Erwin Schrödinger, first discovered the phenomenon of entanglement in the 1930s, they were perplexed. Disturbingly, entanglement required two separated particles to remain connected without being in direct contact. In fact, Einstein famously called entanglement “spooky action at a distance,” because the particles seemed to be communicating faster than the speed of light.

Born on December 1, 1942, John Francis Clauser is an American theoretical and experimental physicist known for contributions to the foundations of quantum mechanics, in particular the Clauser–Horne–Shimony–Holt inequality. Clauser was awarded the 2022 Nobel Prize in Physics, jointly with Alain Aspect and Anton Zeilinger “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.”

SpaceX launched a pair of four-ton Intelsat communications spacecraft from Cape Canaveral at twilight Saturday evening, two days later than planned after back-to-back scrubs, on the third flight of a Falcon 9 rocket this week.

The Falcon 9 rocket lit nine kerosene-fueled Merlin 1D engines and thundered away from Cape Canaveral Space Force Station at 7:05 p.m. EDT (2305 GMT) Saturday. Thrust vector controls pivoted nine main engines to steer the 229-foot-tall (70-meter) rocket due east from pad 40, and the Falcon 9 raced through the speed of sound in less than a minute.

Saturday’s mission, carrying Intelsat’s Galaxy 33 and 34 video relay satellites, marked the third Falcon 9 flight in a little more than three days, following back-to-back launches Wednesday.

Time halted during the European Football Championship last summer. When football player Christian Eriksen unexpectedly fell, passed away, and was resuscitated on live television, the buzzing anxiety that had filled the air vanished in a matter of seconds. And in no time, millions of people all over the globe were aware of the danger posed by cardiovascular diseases, the leading cause of mortality in the western world, according to the World Health Organization.

When the heart fails in young athletes, the condition ARVC is often to blame. Half of all cases of sudden cardiac arrest in athletes occurring during physical activity are thought to be caused by ARVC.

Researchers from the University of Copenhagen provide new insights into a process involved in the development of the disease in a recent study. In fact, they also present a viable treatment method, according to Professor Alicia Lundby, whose research team led the new study.

In the southern sky shine two smudges, known as the Large and Small Magellanic Clouds. They are satellite galaxies of the much larger Milky Way, and one of their qualities has puzzled scientists. As the Clouds tumble through space, the Milky Way should be exerting enough gravitational force to knock loose their star-making material. But the smaller galaxies are still building new stars. A study published Wednesday in the journal Nature finally explains it.

What they did — “A lot of people were struggling to explain how these streams of material could be there,” Dhanesh Krishnarao, assistant professor at Colorado College and lead author of the new study, says in a NASA description of the paper. “If this gas was removed from these galaxies, how are they still forming stars?”

Behavior that we’d consider intelligent is oddly widespread in the animal kingdom. Animals with very different brains from ours—a species of octopus and various birds—engage with tools, to give just one example. It seems intuitive that a brain needs a certain level of size and sophistication to enable intelligence. But figuring out why some species seem to have intelligence while closely related ones don’t has proven difficult—so difficult that we don’t really understand it.

One of the simplest ideas has been that size is everything: have a big enough brain, and you at least have the potential to be smart. But lots of birds seem to be quite intelligent despite small brains—possibly because they cram more neurons into a given volume than other species. Some researchers favor the idea that intelligence comes out of having a large brain relative to your body size, but the evidence there is a bit mixed.

This week, a team of researchers published a paper arguing that the answer is a little of both: relative and absolute size matter when it comes to the brain. And they argue that a specific approach to brain development helps enable it.

28 to 34% lifespan increase in mice. I wonder if there would be side effects as a recent study showed Rapamycin and Metformin canceled each other’s side effects.


In a new study published in Aging Cell, researchers have tested several individual drugs and a combination of rapamycin plus acarbose as potential life extension agents in genetically heterogeneous mice [1].

Identification of successful anti-aging interventions is arguably one of the most challenging research problems to date. In addition to the complexity of aging, researchers have to deal with the biological heterogeneity of animals even within the same species and research reproducibility issues due to different experimental designs and approaches.

The National Institute on Aging Interventions Testing Program (ITP) was launched in 2004 with these limitations in mind. It is a peer-reviewed multi-institutional study evaluating potential lifespan-extending agents. The experiments are run in parallel at the Jackson Laboratory; the University of Michigan; and the University of Texas Health Science Center at San Antonio on genetically heterogeneous mice of both sexes.

A new study challenges the common belief that human brain’s functions such as learning, memory, and perception occur in the central part of neurons called soma. In a brain structure, neurons’ three-like feature has soma in the middle and branches called dendrites. Soma will spike whenever there is data that needs processing and dendrites will communicate with each other — but not until the University of California, Los Angeles discovered the opposite.

UCLA team tested the theory of “soma to dendrites” and found a contradicting result. Dendrites are electrically active and generate 10 times more spikes that somas. Scientists are now on to new finding that dendrites’ role is to form and store memories.

According to Mayank Mehta, senior author of the study, dendrites are not passive conduits. They themselves are moving around freely and generate spikes or brain activity. This also shows that 90 percent of the brain is being utilized since dendrites comprise 90 percent of the brain tissue. Meaning, the human brain has almost 10 times more computational capability than previously thought.