Menu

Blog

Page 4252

Nov 21, 2022

Measuring Entropy in Active-Matter Systems

Posted by in category: entertainment

A tool for estimating the local entropy production rate of a system enables the visualization and quantification of the out-of-equilibrium regions of an active-matter system.

A movie of a molecule jostling around in a fluid at equilibrium looks the same when played forward and backward. Such a movie has an “entropy production rate”—the parameter used to quantify this symmetry—of zero; most other movies have a nonzero value, meaning the visualized systems are out of equilibrium. Researchers know how to compute the entropy production rate of simple model systems. But measuring this parameter in experiments is an open problem. Now Sungham Ro of the Technion-Israel Institute of Technology, Buming Guo of New York University, and colleagues have devised a method for making local measurements of the entropy production rate [1]. They demonstrate the technique using simulations and bacteria observations (Fig. 1).

Nov 21, 2022

Microlaser chip adds new dimensions to quantum communication

Posted by in categories: computing, engineering, quantum physics, security

Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser.

Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in Nature. The group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).

Nov 21, 2022

A combination of ultrasound and nanobubbles allows cancerous tumors to be destroyed without invasive treatments

Posted by in categories: biotech/medical, engineering, nanotechnology

A new technology developed at Tel Aviv University makes it possible to destroy cancerous tumors in a targeted manner, via a combination of ultrasound and the injection of nanobubbles into the bloodstream. According to the research team, unlike invasive treatment methods or the injection of microbubbles into the tumor itself, this latest technology enables the destruction of the tumor in a non-invasive manner.

The study was conducted under the leadership of doctoral student Mike Bismuth from the lab of Dr. Tali Ilovitsh at Tel Aviv University’s Department of Biomedical Engineering, in collaboration with Dr. Dov Hershkovitz of the Department of Pathology. Prof. Agata Exner from Case Western Reserve University in Cleveland also participated in the study. The study was published in the journal Nanoscale.

Dr. Tali Ilovitsh says that their “new technology makes it possible, in a relatively simple way, to inject nanobubbles into the bloodstream, which then congregate in the area of the cancerous . After that, using a low-frequency ultrasound, we explode the nanobubbles, and thereby the tumor.”

Nov 21, 2022

A possible game changer for next generation microelectronics

Posted by in categories: computing, materials

Tiny magnetic whirlpools could transform memory storage in high performance computers.

Magnets generate invisible fields that attract certain materials. A common example is refrigerator magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one—the language of computers.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory want to replace the bar magnets with tiny magnetic vortices. As tiny as billionths of a meter, these vortices are called skyrmions, which form in certain . They could one day usher in a new generation of microelectronics for memory storage in .

Nov 21, 2022

Tesla Will Get Robotaxi at Scale 5–10 Years Before Competitors $TSLA

Posted by in categories: business, robotics/AI, transportation

Self-driving car company Argo AI failure when Ford and VW pulled the plug after spending over $3 billion. It is big evidence that Lidar-dependent self-driving has a long way to go. All of the self-driving car companies except Tesla and Comma were using Lidar. Ford said removing the driver is over 5 years away. Most robotaxi players are dependent upon removing the driver for their business model to work enough to get to serious scale. 5+ years to get to the true starting point and 5+ years to scale translates to an 8-year lead for Tesla if Tesla solves robotaxi in 2 years. Uber had a 2.5 year lead over Lyft and that meant three times the market share for Uber.

Nov 21, 2022

Discovery reveals ‘brain-like computing’ at molecular level is possible

Posted by in categories: computing, neuroscience, particle physics

A discovery at University of Limerick in Ireland has revealed for the first time that unconventional brain-like computing at the tiniest scale of atoms and molecules is possible.

Researchers at University of Limerick’s Bernal Institute worked with an international team of scientists to create a new type of organic material that learns from its past behavior.

The discovery of the “dynamic molecular switch” that emulates synaptic behavior is revealed in a new study in the journal Nature Materials.

Nov 21, 2022

Researchers control individual light quanta at very high speed

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

A team of German and Spanish researchers from Valencia, Münster, Augsburg, Berlin and Munich have succeeded in controlling individual light quanta to an extremely high degree of precision. In Nature Communications, the researchers report how, by means of a soundwave, they switch individual photons on a chip back and forth between two outputs at gigahertz frequencies. This method, demonstrated here for the first time, can now be used for acoustic quantum technologies or complex integrated photonic networks.

Light waves and soundwaves form the technological backbone of modern communications. While glass fibers with laser light form the World Wide Web, nanoscale soundwaves on chips process signals at gigahertz frequencies for wireless transmission between smartphones, tablets or laptops. One of the most pressing questions for the future is how these technologies can be extended to , to build up secure (i.e., tap-free) quantum communication networks.

“Light quanta or photons play a very central role in the development of quantum technologies,” says physicist Prof. Hubert Krenner, who heads the study in Münster and Augsburg. “Our team has now succeeded in generating on a chip the size of a thumbnail and then controlling them with unprecedented precision, precisely clocked by means of soundwaves,” he says.

Nov 21, 2022

The historic LightSail 2 mission finally burned up in Earth’s atmosphere

Posted by in category: futurism

David Imbaratto, Stellar Exploration / The Planetary Society.

The mission demonstrated that flight by light is possible when it used a 32-square-meter (244-square-foot) sail made out of mylar to raise a small CubeSat spacecraft’s orbit by 1.9 miles (3.2 km).

Nov 21, 2022

SpaceX ship headed 1000 kilometers out to sea for expendable Falcon 9 launch

Posted by in category: satellites

A SpaceX recovery ship is headed more than a thousand kilometers downrange to support the second expendable Falcon 9 rocket launch in nine days.

No earlier than (NET) 9:57 pm EST (02:57 UTC) on Monday, November 21st, a Falcon 9 rocket is scheduled to lift off from SpaceX’s Cape Canaveral Space Force Station (CCSFS) LC-40 pad carrying the Eutelsat 10B geostationary communications satellite. For unknown reasons, the French communications provider paid extra to get as much performance as possible out of Falcon 9, requiring SpaceX to expend the rocket’s booster instead of attempting to land and reuse it.

The mission will be Eutelsat’s third Falcon 9 launch in less than three weeks and will wrap up a trio of launch contracts the company secretly signed with SpaceX to move satellites off of competitor Ariane Group’s unavailable Ariane 5 and delayed Ariane 6 rockets. In a rare coincidence, Eutelsat 10B will also be SpaceX’s second expendable Falcon 9 launch in a row and the third Falcon launch to expend a booster this month. But like those two other missions, not all of the Falcon rocket tasked with launching Eutelsat 10B will be lost.

Nov 21, 2022

Ferromagnetic Nanoparticles Have High Tumor Penetration

Posted by in category: nanotechnology

In an article published in PNAS, researchers introduced the magnetotactic bacteria (MTB) Mms6 proteins into a reverse micelle structure to create a nanoreactor that resembled a magnetosome. This magnetosome-inspired nanoscale chamber synthesized a single domain’s magnetic nanoparticles (MNPs).