Toggle light / dark theme

Year 2017 😗


In 2015, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) developed the first on-chip metamaterial with a refractive index of zero, meaning that the phase of light could be stretched infinitely long. The metamaterial represented a new method to manipulate light and was an important step forward for integrated photonic circuits, which use light rather than electrons to perform a wide variety of functions.

Now, SEAS researchers have pushed that technology further — developing a zero-index waveguide compatible with current silicon photonic technologies. In doing so, the team observed a physical phenomenon that is usually unobservable—a of light.

The research is published in ACS Photonics. The Harvard Office of Technology Development has filed a patent application and is exploring commercialization opportunities.

Year 2012 😗


A Sierpinksi carpet is one of the more famous fractal objects in mathematics. Creating one is an iterative procedure. Start with a square, divide it into nine equal squares and remove the central one. That leaves eight squares around a central square hole. In the next iteration, repeat this process with each of the eight remaining squares and so on (see above). One interesting problem is to find the area of a Sierpinski triangle. Clearly this changes with each iteration. Assuming the original square has area equal to 1, the area after the first iteration is 8/9. After the second iteration, it is (8Ă·9)^2; after the third it is (8Ă·9)^3 and so on.

Year 2020 face_with_colon_three Propellant free thruster.


I usually approach papers on the subject of alternative thrusters with a certain degree of cynicism. But we’ve finally been given a study on microwave thrusters that doesn’t rely on impossible physics. Instead, it used a plain old plasma thruster.

Plasma thrusters have generally been thought of as a means of propulsion in space, but now one has been designed to operate under atmospheric conditions. According to the researchers involved, it’s an air plasma thruster that has the potential to produce the same thrust as a commercial jet engine.

Combustible air?

Year 2008 o.o!


That is so fantastically ridiculous and dangerous
 not that the laser is terribly dangerous; more for the incredibly fast print head. the video reminds me of “Starship Troopers”, i love it. it’s probably not deep, i wonder if they heal up after a few months.

Make a small one, get it FDA approved! it’s the wave of the future!

UV tattoos use a fluorescent dye, which means the tattoo only appears under UV light. There is little evidence on whether UV tattoos are safe for human skin.

UV tattoos, also known as black light tattoos, are invisible under regular lighting and only appear under UV light due to the fluorescent compounds within the ink.

There is no regulation over UV tattoos, so there may be some potential health risks, depending on the ink’s chemicals. UV tattoos will also require similar aftercare to regular tattoos.

The field of epidermal electronics, or e-tattoos, covers a wide range of flexible and stretchable monitoring gadgets that are wearable directly on the skin. We have covered this area in multiple Nanowerk Spotlights, for instance stick-on epidermal electronics tattoo to measure UV exposure or tattoo-type biosensors based on graphene; and we also have posted a primer on electronic skin.

Taking the concept of e-tattoos a step further, integrating them with triboelectric nanogenerators (TENGs), for instance for health monitoring, could lead to next generation wearable nanogenerators and Internet-of-things devices worn directly on and powered by the skin.

In work reported in Advanced Functional Materials (“Triboelectric Nanogenerator Tattoos Enabled by Epidermal Electronic Technologies”), researchers report a tattoo-like TENG (TL-TENG) design with a thickness of tens of micrometers, that can interface with skin without additional adhesive layers, and be used for energy harvesting from daily activities.

Year 2019 😁


Semiconducting carbon nanotubes (CNTs) printed into thin films offer high electrical performance, significant mechanical stability, and compatibility with low-temperature processing. Yet, the implementation of low-temperature printed devices, such as CNT thin-film transistors (CNT-TFTs), has been hindered by relatively high process temperature requirements imposed by other device layers—dielectrics and contacts. In this work, we overcome temperature constraints and demonstrate 1D–2D thin-film transistors (1D–2D TFTs) in a low-temperature (maximum exposure ≀80 °C) full print-in-place process (i.e., no substrate removal from printer throughout the entire process) using an aerosol jet printer. Semiconducting 1D CNT channels are used with a 2D hexagonal boron nitride (h-BN) gate dielectric and traces of silver nanowires as the conductive electrodes, all deposited using the same printer.

Year 2009 This is awesome 👌 👏


The title character of Ray Bradbury’s book The Illustrated Man is covered with moving, shifting tattoos. If you look at them, they will tell you a story.

New LED tattoos from the University of Pennsylvania could make the Illustrated Man real (minus the creepy stories, of course). Researchers there are developing silicon-and-silk implantable devices which sit under the skin like a tattoo. Already implanted into mice, these tattoos could carry LEDs, turning your skin into a screen.

The silk substrate onto which the chips are mounted eventually dissolves away inside the body, leaving just the electronics behind. The silicon chips are around the length of a small grain of rice — about 1 millimeter, and just 250 nanometers thick. The sheet of silk will keep them in place, molding to the shape of the skin when saline solution is added.

Diabetes tracking can be a scary and tedious task, but University of California at San Diego researchers have developed a needless glucose monitor tattoo sensor that measures insulin levels through sweat on the skin.

There are approximately 30.3 million people living with diabetes in the U.S., according to the American Diabetes Association. Monitoring blood sugar levels is an important part of managing their condition. For people like Angela Valdez, that daily task is avoided because of the traditional pricking of the finger.

“I don’t handle monitoring my diabetes as I should,” said Valdez in a press release. “I have the diet down a lot better now and I take my medication as I should, but the finger pricking is a struggle for me. I only test if I feel bad. If I don’t feel my blood sugar level is high, and I’m taking the pill every day, I think I’m alright. Which is really bad thinking, but the pin prick is terrifying.”