A group of scientists, including Sergey Frolov, professor of physics at the University of Pittsburgh, and co-authors from Minnesota and Grenoble have undertaken several replication studies centered around topological effects in nanoscale superconducting or semiconducting devices. This field is important because it can bring about topological quantum computing, a hypothetical way of storing and manipulating quantum information while protecting it against errors.
In all cases, they found alternative explanations of similar data. While the original papers claimed advances for quantum computing and made their way into top scientific journals, the individual follow-ups could not make it past the editors at those same journals.
Reasons given for its rejection included that, being a replication, it was not novel; that, after a couple of years, the field had moved on. But replications take time and effort and the experiments are resource-intensive and cannot happen overnight. And important science does not become irrelevant on the scale of years.









