Toggle light / dark theme

Google has unveiled a quantum computing chip, “Willow,” capable of performing tasks in minutes that would take supercomputers 10 septillion years. This breakthrough in error correction marks a significant step towards practical quantum computing, with potential applications in drug discovery, fusion energy, and climate change solutions.


Google on Monday showed off a new quantum computing chip that it said was a major breakthrough that could bring practical quantum computing closer to reality.

A custom chip called “Willow” does in minutes what it would take leading supercomputers 10 septillion years to complete, according to Google Quantum AI founder Hartmut Neven.

“Written out, there is a 1 with 25 zeros,” Neven said of the time span while briefing journalists. “A mind-boggling number.”

Just as the metaverse industry finally began its breakthrough, ChatGPT’s launch in November 2022 proved a technological avalanche. Amid post-pandemic economic pressures, companies pivoted away from metaverse aspirations to AI adoption, seeking immediate returns through automation and virtualization.

Apple’s 2023 entry into the space with Vision Pro VR headset has similarly faced challenges. At $3,499, with limited content and a sparse developer ecosystem, Apple struggles to find its market. Early projections suggest initial production runs of fewer than 400,000 units.

What if we’ve been looking for the metaverse in the wrong places? While Meta, HTC and Sony have so far struggled to establish their vision of a VR-first digital world, gaming platforms like Roblox quietly built what might be the actual metaverse.

Researchers at the University of Reading and University College London have developed a new artificial intelligence model that can predict how atoms arrange themselves in crystal structures. Called CrystaLLM, the technology works similarly to AI chatbots, by learning the “language” of crystals by studying millions of existing crystal structures. It could lead to faster discovery of new materials for everything from solar panels to computer chips.

Read Full Story.

To leverage the power of AI for data analytics, companies need to have systems in place that bring all relevant data points together on one platform. Siloed systems prevent AI from conducting a comprehensive evaluation. Companies that want to conduct predictive analysis, such as demand forecasting, will need to give AI platforms access to historical data.

Optimizing user interfaces for both customers and employees is also an important step toward empowering efficient operations. Consumer-facing interfaces should provide transparency, flexibility and a high level of user control, enabling potential customers to explore a variety of options and providing the information needed to ensure moves are handled correctly. Employee-facing interfaces should make it easy for drivers and customer service representatives to receive and respond to notifications such as route updates or customer concerns.

For commercial moving, achieving maximum efficiency requires much more than transportation. Solutions should consider every aspect of the move, leveraging technology and informed strategies to empower a seamless transition. When approached strategically, the result is reduced downtime and the peace of mind that all equipment is transported with precision and moved in accordance with predetermined timelines.

The study sheds light on mechanisms that could help humans recover from hearing loss.


A new study from USC Stem Cell scientists reveals how certain animals, such as zebrafish and lizards, can regenerate their hearing by reactivating dormant gene regulators.

The discovery provides insight into the mechanisms that could one day help humans recover from hearing loss and balance disorders.

Led by Tuo Shi, Ksenia Gnedeva, and Gage Crump from the Keck School of Medicine of USC, the research focuses on the inner ear’s two critical cell types: sensory cells, which detect sound, and supporting cells, which provide structural and functional support.

Researchers from City University of Hong Kong (CityUHK) and local collaborators have made a groundbreaking discovery of a new vortex electric field, poised to revolutionize future electronic, magnetic, and optical devices. This research holds immense promise for significantly enhancing the performance of various devices, particularly by improving memory stability and accelerating computing speeds.

Read Full Story.

Conversely, proprietary LLMs typically offer robust security features but still pose data privacy and control risks. Using these models involves sharing sensitive data with a third-party provider, which could lead to regulatory penalties if a breach occurs.

LLMs also lack transparency regarding their training data and how datasets are formed. Be mindful of potential bias and fairness issues and consider a human-in-the-loop approach, where specialists review and manage the model’s output.

LLMs are most effective when used to streamline complex processes and drive innovation. To leverage these models responsibly, prioritize data governance—especially in highly regulated industries.

Mike has over 15 years of experience in healthcare, including extensive experience designing and developing medical devices. MedCrypt, Inc.

On October 1, 2024, the Food and Drug Administration (FDA) marked a major milestone in medical device cybersecurity enforcement. This marks one year since the retracted Refuse to Accept (RTA) policy and the full implementation of the Protecting and Transforming Cyber Healthcare (PATCH) Act amendment to the Food, Drug & Cosmetic Act (FD&C). The FDA’s new requirements represent a fundamental shift in the regulatory landscape for medical device manufacturers (MDMs), as cybersecurity is now a non-negotiable element of device development and compliance.

The timing is not coincidental. In 2023, the FDA issued its final guidance entitled “Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions.” This outlined the detailed cybersecurity requirements and considerations that MDMs must address in their submissions, highlighting the security measures in place to gain regulatory approval. With these requirements, the FDA is taking a hard stance: Cybersecurity is a core consideration, with compliance being systematically enforced.