Toggle light / dark theme

HOUSTON (AP) — Fire erupted at a petrochemical plant in the Houston area Friday, sending nine workers to a hospital and causing a huge plume of smoke visible for miles.

Emergency responders were called to help around 3 p.m. at the Shell facility in Deer Park, a suburb east of Houston. The city of Deer Park said in an advisory that there was no shelter-in-place order for residents.

Harris County Sheriff Ed Gonzalez said earlier in the day that five contracted employees were hospitalized for precautionary reasons, adding that they were not burned. He said they were taken to a hospital due to heat exhaustion and proximity to the fire.

A new study published in Human Brain Mapping revealed that long-term musical training can modify the connectivity networks in the brain’s white matter.

Previous research has shown that intense musical training induces structural neuroplasticity in different brain regions. However, previous studies mainly investigated brain changes in instrumental musicians, and little is known about how structural connectivity in non-instrumental musicians is affected by long-term training.

To examine how the connections between different parts of the brain might be affected by long-term vocal training, the researchers of the study used graph theory and diffusion-weighted images. Graph theory is a mathematical framework used to study the networks’ architecture in the human brain, while diffusion-weighted imaging is an MRI technique that measures the diffusion of water molecules in tissues, providing information on the structural connectivity of the brain.

More accurate space-weather predictions and safer satellite navigation through radiation belts could someday result from new insights into “space waves,” researchers at Embry-Riddle Aeronautical University reported.

The group’s latest research, published on May 4, 2023, by the journal Nature Communications, shows that seasonal and daily variations in the Earth’s magnetic tilt, toward or away from the sun, can trigger changes in large-wavelength waves.

These breaking waves, known as Kelvin-Helmholtz waves, occur at the boundary between the solar wind and the Earth’s magnetic shield. The waves happen much more frequently around the spring and fall seasons, researchers reported, while wave activity is poor around summer and winter.

It is only the optimists who achieve anything in this world —theorist John Ellis once read this adage on a candy wrapper. It stuck with him, so much so that in 1986 he referenced this candy-wrapper wisdom in his Nature article “The superstring: theory of everything, or of nothing?”

“I was pretty upbeat,” Ellis says. “I was pretty positive about it.”

According to Ellis, ‘theory of everything’ is a rather tongue-in-cheek term for an encompassing framework that links together all physical phenomena on a fundamental level. The idea went viral, both scientifically and culturally. Numerous authors, philosophers and scientific influencers jumped on the bandwagon, including the makers of a 2014 biopic about Stephen Hawking.

It’s a dangerous world out there. From bacteria and viruses to accidents and injuries, threats surround us all the time. And nothing protects us more steadfastly than our skin. The barrier between inside and out, the body’s largest organ is also its most seamless defense.

And yet the skin is not invincible. It suffers daily the slings and arrows of outrageous fortune, and it tries to keep us safe by sensing and responding to these harms. A primary method is the detection of a pathogen, which kicks the immune system into action. But new research from the lab of Rockefeller’s Elaine Fuchs, published in Cell, reveals an alternative protective mechanism that responds to injury signals in wounded tissue—including low oxygen levels from blood vessel disruption and scab formation—and it doesn’t need an infection to get into gear.

The study is the first to identify a damage response pathway that is distinct from but parallel to the classical pathway triggered by pathogens.