Toggle light / dark theme

Sea mammal expert Dr Julie Oswald, of the University of St Andrews’ Scottish Oceans Institute, created the tool, known as the Real-time Odontocete Call Classification Algorithm (Rocca), using AI.

It can categorise dolphin calls by species and comes in different versions linked to different geographical areas.

There are around 42 species of dolphin and they use hundreds of different sounds to communicate.

Chondritic meteorites (chondrites) are some of the oldest rocks in our solar system, forming 4.5 billion years ago. Therefore, their primitive composition means that they offer a window into the origins of planet formation, particularly as their major elements (heavier than hydrogen and helium, including oxygen, silicon, magnesium, iron and nickel) closely reflect the sun’s photosphere composition.

Melting and clumped accumulation (accretion) of at high temperatures (up to 2,000 Kelvin [~1,727 °C]) in the formed crystallized silicate spheres known as chondrules, which further joined together to produce asteroids, the remnants of planetary genesis.

There are two main types, believed to have formed in the inner and outer solar system respectively: ordinary chondrites are composed of up to 90% chondrules, while carbonaceous chondrites have only 20–50% chondrules within a background matrix.

NASA’s Synthetic Biology Project is collaborating with the GrabCAD community to create innovative 3D-printable bioreactor designs. These bioreactors aim to reduce the mass and volume of supplies needed for extended space missions by enabling in-situ production of essential nutrients through reusable or recyclable solutions.

The project focuses on enhancing BioNutrient Production Packs, which use bio-engineered microorganisms to generate critical nutrients like beta carotene. Crews activate these microorganisms by adding water and growth media to dormant cultures. The existing bioreactors include early polycarbonate Gen-0 models and lightweight Gen-1 soft packs. Both designs allow gas exchange to prevent over-pressurization while ensuring safe nutrient production.

NASA seeks to address key challenges for long-duration missions, including designing bioreactors that are either reusable or recyclable and can be manufactured aboard spacecraft. The bioreactor must safely handle liquid cultures, support gas exchange, and be compatible with additive manufacturing technologies. Reusability designs must consider sterilization challenges, while recyclable designs should use materials that can be reprocessed into new bioreactors.