Toggle light / dark theme

Imec, a research and innovation hub in nanoelectronics and digital technologies, has presented the successful integration of a pinned photodiode structure in thin-film image sensors.

The report, published in the August 2023 edition of Nature Electronics, is titled “Thin-film image sensors with a pinned photodiode structure.” Initial results were presented at the 2023 edition of the International Image Sensors Workshop.

With the addition of a pinned-photogate and a transfer gate, the superior absorption qualities of thin-film imagers—beyond one µm wavelength—can finally be exploited, unlocking the potential of sensing light beyond the visible in a cost-efficient way.

Quantum computers are the next step in computation. These devices can harness the peculiarities of quantum mechanics to dramatically boost the power of computers. Not even the most powerful supercomputer can compete with this approach. But to deliver on that incredible potential, the road ahead remains long.

Still, in the last few years, big steps have been taken, with simple quantum processors coming online. New breakthroughs have shown solutions to the major challenges in the discipline. The road is still long, but now we can see several opportunities along the way. For The Big Questions, IFLScience’s podcast, we spoke to Professor Winfried Hensinger, Professor of Quantum Technology at the University of Sussex and the Chief Scientific Officer for Universal Quantum, about the impact these devices will have.

Stem cells have been used to produce organoids that release the proteins responsible for forming dental enamel, a substance that shields teeth from harm and decay. This initiative was led by a multi-disciplinary team of researchers from the University of Washington in Seattle.

“This is a critical first step to our long-term goal to develop stem cell-based treatments to repair damaged teeth and regenerate those that are lost,” said Hai Zhang, professor of restorative dentistry at the UW School of Dentistry and one of the co authors of the paper describing the research.

The findings are published today in the journal Developmental Cell. Ammar Alghadeer, a graduate student in Hannele Ruohola-Baker’s laboratory in the Department of Biochemistry at the UW School of Medicine was the lead author on the paper. The lab is affiliated with the UW Medicine Institute for Stem Cell and Regenerative Medicine.

😗😁


One of Google’s AI units is using generative AI to develop at least 21 different tools for life advice, planning and tutoring, The New York Times reported Wednesday.

Google’s DeepMind has become the “nimble, fast-paced” standard-bearer for the company’s AI efforts, as CNBC previously reported, and is behind the development of the tools, the Times reported.

News of the tool’s development comes after Google’s own AI safety experts had reportedly presented a slide deck to executives in December that said users taking life advice from AI tools could experience “diminished health and well-being” and a “loss of agency,” per the Times.

A mysterious quantum phenomenon reveals an image of an atom like never before. You can even see the difference between protons and neutrons.

The Relativistic Heavy Ion Accelerator (RHIC), from the Brookhaven Laboratory in the United States, is a sophisticated device capable of accelerating gold ions to a speed of up to 99.995% that of light. Thanks to him, it has recently been possible to verify, for example, Einstein’s famous equation E=mc2.